Magnetron sıçratma yöntemiyle biriktirilen TiWSiN ince filmlerin yapısal ve tribolojik özelliklerine farklı azot akış hızlarının etkisinin araştırılması
Yıl 2025,
Cilt: 15 Sayı: 3, 740 - 752, 15.09.2025
Semih Duran
,
Ahmet Melik Yılmaz
,
Hikmet Çiçek
Öz
TiWSiN ince filmler magnetron sıçratma yöntemiyle farklı azot akış hızlarında biriktirilerek üretilmiştir. Taramalı elektron mikroskobu (SEM) ile üretilen filmlerin kalınlıkları 1.71 µm ve 1.39 µm olarak ölçülmüştür. Artan azot akış miktarının, film kalınlıklarında belirgin bir azalmaya yol açtığı gözlemlenmiştir. X-ışını kırınım (XRD) cihazı ile TiWSiN ince filmlerde farklı açı ve düzlemlerde sadece TiN kristallerinin oluştuğu belirlenmiştir. Enerji dağılımlı spektroskopi (EDS) cihazı ile filmlerin kimyasal kompozisyonlarını oluşturan Ti, W, Si ve N elementlerinin atomik oranları belirlenmiştir. TiWSiN ince filmlerin sertlik değerlerinin tespit edilmesi için mikro sertlik ölçümleri yapılmıştır. En yüksek sertlik değeri 6.8 GPa ile N-40 filminde ölçülmüştür. Filmin mikro yapısında baskın olan TiN (111) fazının varlığı, N-40 filminde sertliğin artmasına katkıda bulunmuştur. TiWSiN ince filmlerin tribolojik testleri aşınma cihazı ve 3D profilometre cihazı kullanılarak araştırılmıştır. Yapılan aşınma testlerinde, N-40 filminin aşınma hızı 1.81×10-5 (mm3/(N.m)) ve N-50 filminin aşınma hızı ise 9.98×10-5 (mm3/(N.m)) olarak hesaplanmıştır. Sonuçlar incelendiğinde, 4 sccm azot akış hızında biriktirilen N-40 filminin aşınma direncinin N-50 filmine kıyasla yaklaşık 5.5 kat daha yüksek olduğu tespit edilmiştir. Tribotest sonuçları, N-40 filminin aşınma derinlik profilinin filmin taban malzeme üzerinde varlığını sürdürdüğünü açıkça ortaya koymuştur. Bu bulgular, N-40 filminin tribolojik performansının daha yüksek olduğunu göstermektedir. Sonuç olarak, azot akış hızının kontrolünün TiWSiN filmlerin performansını doğrudan etkilediği belirlenmiştir.
Kaynakça
-
Abadias, G. (2008). Stress and preferred orientation in nitride-based PVD coatings. Surface and Coatings Technology, 202(11), 2223–2235. https://doi.org/10.1016/j.surfcoat.2007.08.029
-
Azushima, A., Tanno, Y., Iwata, H., & Aoki, K. (2008). Coefficients of friction of TiN coatings with preferred grain orientations under dry condition. Wear, 265(7–8), 1017–1022. https://doi.org/10.1016/j.wear.2008.02.019
-
Bai, X. M., Zheng, W. T., Guo, X. J., & She, H. (2013). Microstructure, Interface and Hardness of Ti/TiN Nanolayered Coatings. Key Engineering Materials, 531, 645–650. https://doi.org/10.4028/www.scientific.net/KEM.531-532.645
-
Beake, B. D., & Fox-Rabinovich, G. S. (2014). Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining. Surface and Coatings Technology, 255, 102–111. https://doi.org/10.1016/j.surfcoat.2014.02.062
-
Benli, B., & Celik, I. (2024). Surface modification and analysis of St37 steel with Al2O3-TiO2, ZrO2, and Cr2O3 ceramic coatings: structural, mechanical, and tribological properties. Tribology International, 191, 109183. https://doi.org/10.1016/j.triboint.2023.109183
-
Chang, Y.-Y., Chang, H., Jhao, L.-J., & Chuang, C.-C. (2018). Tribological and mechanical properties of multilayered TiVN/TiSiN coatings synthesized by cathodic arc evaporation. Surface and Coatings Technology, 350, 1071–1079. https://doi.org/10.1016/j.surfcoat.2018.02.040
-
Chauhan, K. V, & Rawal, S. K. (2014). A review paper on tribological and mechanical properties of ternary nitride based coatings. Procedia Technology, 14, 430–437. https://doi.org/10.1016/j.protcy.2014.08.055
-
Chen, D. Y., Tsai, C. H., Yang, W. J., Liu, D. W., & Hsu, C. Y. (2016). Reactive co-sputter deposition and properties of CrAlSiN hard films for enhancement of cutting tools. International Journal of Refractory Metals and Hard Materials, 58, 110–116. https://doi.org/10.1016/j.ijrmhm.2016.04.006
-
Cicek, H., Acar, Y. E., Duran, S., Yilmaz, A. M., & Cakir, M. (2023). Structural and tribological properties of TiSiN films with different Si content. Thin Solid Films, 783, 140059. https://doi.org/10.1016/j.tsf.2023.140059
-
Çam, A. S., Ergüder, T. O., Kaya, G., & Yıldız, F. (2022). Improvement of structural/tribological properties and milling performances of tungsten carbide cutting tools by bilayer TiAlN/TiSiN and monolayer AlCrSiN ceramic films. Ceramics International, 48(18), 26342–26350. https://doi.org/10.1016/j.ceramint.2022.05.318
-
Çelik, İ. (2016). Influence of CrN coating on electrochemical behavior of plasma nitrided pure titanium in bio-simulated environment. Journal of Bionic Engineering, 13(1), 150-155. https://doi.org/10.1016/S1672-6529(14)60169-4
-
Çelik, İ., Karakan, M., & Bülbül, F. (2016). Investigation of structural and tribological properties of electroless Ni–B coated pure titanium. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230(1), 57-63. https://doi.org/10.1177/1350650115588568
-
Duan, L., Wu, H., Guo, L., Xiu, W., & Yu, X. (2020). The effect of phase on microstructure and mechanical performance in TiAlN and TiSiN films. Materials Research Express, 7(6), 066401. https://doi.org/10.1088/2053-1591/ab96f6
-
Dubey, P., Srivastava, S., Chandra, R., & Ramana, C. V. (2016). Toughness enhancement in zirconium-tungsten-nitride nanocrystalline hard coatings. AIP Advances, 6(7). https://doi.org/10.1063/1.4959224
-
Dursun, T., & Soutis, C. (2014). Recent developments in advanced aircraft aluminium alloys. Materials & Design (1980-2015), 56, 862–871. https://doi.org/10.1016/j.matdes.2013.12.002
-
He, J. L., Chen, C. K., & Hon, M. H. (1996). Micro structure and properties of TiSiN films prepared by plasma-enhanced chemical vapor deposition. Materials Chemistry and Physics, 44(1), 9–16. https://doi.org/10.1016/0254-0584(95)01655-E
-
Hu, W., Du, J., Liu, Z., Sun, X., & Chen, L. (2023). Structure, Mechanical and Thermal Properties of TiSiWN Coatings. Coatings, 13(1), 119. https://doi.org/10.3390/coatings13010119
-
Jehn, H. A. (2000). Multicomponent and multiphase hard coatings for tribological applications. Surface and Coatings Technology, 131(1–3), 433–440. https://doi.org/10.1016/S0257-8972(00)00783-0
-
Kelly, P. J., & Arnell, R. D. (2000). Magnetron sputtering: a review of recent developments and applications. Vacuum, 56(3), 159-172. https://doi.org/10.1016/S0042-207X(99)00189-X
-
Liu, J., Hao, Z., Cui, Z., Ma, D., Lu, J., Cui, Y., Li, C., Liu, W., Xie, S., & Huang, P. (2021). Investigation of the oxidation mechanisms of superlattice Cr-CrN/TiSiN-Cr multilayer coatings on Zircaloy substrates under high-temperature steam atmospheres. Corrosion Science, 192, 109782. https://doi.org/10.1016/j.corsci.2021.109782
-
Ljungcrantz, H., Odén, M., Hultman, L., Greene, J. E., & Sundgren, J. (1996). Nanoindentation studies of single‐crystal (001)‐,(011)‐, and (111)‐oriented TiN layers on MgO. Journal of Applied Physics, 80(12), 6725–6733. https://doi.org/10.1063/1.363799
-
Macías, H. A., Yate, L., Coy, E., Aperador, W., & Olaya, J. J. (2021). Insights and Optimization of the Structural and Mechanical Properties of TiWSiN Coatings using the Taguchi method. Applied Surface Science, 558, 149877. https://doi.org/10.1016/j.apsusc.2021.149877
-
Macías, H. A., Yate, L., Coy, L. E., Olaya, J. J., & Aperador, W. (2018). Effect of nitrogen flow ratio on microstructure, mechanical and tribological properties of TiWSiNx thin film deposited by magnetron co-sputtering. Applied Surface Science, 456, 445–456. https://doi.org/10.1016/j.apsusc.2018.06.129
-
Maher, M., Iraola-Arregui, I., Youcef, H. Ben, Rhouta, B., & Trabadelo, V. (2022). The synergistic effect of wear-corrosion in stainless steels: A review. Materials Today: Proceedings, 51, 1975–1990. https://doi.org/10.1016/j.matpr.2021.05.010
-
Miletić, A., Panjan, P., Škorić, B., Čekada, M., Dražič, G., & Kovač, J. (2014). Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering. Surface and Coatings Technology, 241, 105–111. https://doi.org/10.1016/j.surfcoat.2013.10.050
-
Moritz, Y., Saringer, C., Tkadletz, M., Stark, A., Schell, N., Letofsky-Papst, I., Czettl, C., Pohler, M., & Schalk, N. (2020). Oxidation behavior of arc evaporated TiSiN coatings investigated by in-situ synchrotron X-ray diffraction and HR-STEM. Surface and Coatings Technology, 404, 126632. https://doi.org/10.1016/j.surfcoat.2020.126632
-
Musil, J. (2000). Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 125(1-3), 322-330. https://doi.org/10.1016/S0257-8972(99)00586-1
-
Niederhofer, A., Bolom, T., Nesladek, P., Moto, K., Eggs, C., Patil, D. S., & Veprek, S. (2001). The role of percolation threshold for the control of the hardness and thermal stability of super-and ultrahard nanocomposites. Surface and Coatings Technology, 146, 183–188. https://doi.org/10.1016/S0257-8972(01)01469-4
-
Pei, F., Xu, Y. X., Chen, L., Du, Y., & Zou, H. K. (2018). Structure, mechanical properties and thermal stability of Ti1-xSixN coatings. Ceramics International, 44(13), 15503–15508. https://doi.org/10.1016/j.ceramint.2018.05.210
-
Peng, S., Xu, J., Li, Z., Jiang, S., Munroe, P., Xie, Z.-H., & Lu, H. (2020). A reactive-sputter-deposited TiSiN nanocomposite coating for the protection of metallic bipolar plates in proton exchange membrane fuel cells. Ceramics International, 46(3), 2743–2757. https://doi.org/10.1016/j.ceramint.2019.09.263
-
Qi, Z. B., Sun, P., Zhu, F. P., Wang, Z. C., Peng, D. L., & Wu, C. H. (2011). The inverse Hall–Petch effect in nanocrystalline ZrN coatings. Surface and Coatings Technology, 205(12), 3692–3697. https://doi.org/10.1016/j.surfcoat.2011.01.021
-
Sangiovanni, D. G., Hultman, L., Chirita, V., Petrov, I., & Greene, J. E. (2016). Effects of phase stability, lattice ordering, and electron density on plastic deformation in cubic TiWN pseudobinary transition-metal nitride alloys. Acta Materialia, 103, 823–835. https://doi.org/10.1016/j.actamat.2015.10.039
-
Shtansky, D. V, Kiryukhantsev-Korneev, P. V, Bashkova, I. A., Sheveiko, A. N., & Levashov, E. A. (2010). Multicomponent nanostructured films for various tribological applications. International Journal of Refractory Metals and Hard Materials, 28(1), 32–39. https://doi.org/10.1016/j.ijrmhm.2009.07.014
-
Sivapragash, M., Kumaradhas, P., Retnam, B. S. J., Joseph, X. F., & Pillai, U. T. S. (2016). Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy. Materials & Design, 90, 713–722. https://doi.org/10.1016/j.matdes.2015.11.027
-
Thampi, V. V. A., Bendavid, A., & Subramanian, B. (2016). Nanostructured TiCrN thin films by Pulsed Magnetron Sputtering for cutting tool applications. Ceramics International, 42(8), 9940–9948. https://doi.org/10.1016/j.ceramint.2016.03.095
-
Tisza, M., & Czinege, I. (2018). Comparative study of the application of steels and aluminium in lightweight production of automotive parts. International Journal of Lightweight Materials and Manufacture, 1(4), 229–238. https://doi.org/10.1016/j.ijlmm.2018.09.001
-
Wang, D., Lin, S., Gong, Y., Shi, Q., Yang, H., Shi, J., Wang, W., Dai, M., Jiang, B., & Zhou, K. (2020). Solid particle erosion resistance of Cr-base gradient multilayer coatings. Surface and Coatings Technology, 402, 126352. https://doi.org/10.1016/j.surfcoat.2020.126352
-
Wuhrer, R., & Yeung, W. Y. (2003). Effect of target–substrate working distance on magnetron sputter deposition of nanostructured titanium aluminium nitride coatings. Scripta Materialia, 49(3), 199–205. https://doi.org/10.1016/S1359-6462(03)00264-1
-
Yang, J., Shou, D., Zhao, N., Tang, Y., Cao, H., Qi, F., & Ouyang, X. (2025). Interfacial structure, mechanical properties, and corrosion resistance of Cr/TiSiN nano-multilayer coating by filtered cathode vacuum arc technique. Journal of Manufacturing Processes, 136, 267–281. https://doi.org/10.1016/j.jmapro.2025.01.076
-
Yılmaz, A. M., Çiçek, H., Duran, S., Gülten, G., & Efeoğlu, İ. (2024). Investigation of hardness, tribological and adhesion properties of TiAlNiVN HEA films heat treated at different temperatures. Tribology International, 197, 109739. https://doi.org/10.1016/j.triboint.2024.109739
-
Zhu, J. Q., Johansson-Jöesaar, M. P., Polcik, P., Jensen, J., Greczynski, G., Hultman, L., & Odén, M. (2013). Influence of Ti–Si cathode grain size on the cathodic arc process and resulting Ti–Si–N coatings. Surface and Coatings Technology, 235, 637–647. https://doi.org/10.1016/j.surfcoat.2013.08.042
-
Zhu, Y., Dong, M., Li, J., & Wang, L. (2020). The improved corrosion and tribocorrosion properties of TiSiN/Ag by thermal treatment. Surface and Coatings Technology, 385, 125437. https://doi.org/10.1016/j.surfcoat.2020.125437
Investigation of the effect of different nitrogen flow rates on the structural and tribological properties of TiWSiN thin films deposited by magnetron sputtering
Yıl 2025,
Cilt: 15 Sayı: 3, 740 - 752, 15.09.2025
Semih Duran
,
Ahmet Melik Yılmaz
,
Hikmet Çiçek
Öz
TiWSiN thin films were deposited using the magnetron sputtering method at different nitrogen flow rates. The thicknesses of the films, measured by scanning electron microscopy (SEM), were 1.71 µm and 1.39 µm. An increase in nitrogen flow resulted in a noticeable reduction in film thickness. X-ray diffraction (XRD) analysis confirmed the formation of only TiN crystals in different angles and planes. The atomic ratios of Ti, W, Si, and N elements forming the chemical composition of the films were determined using energy dispersive spectroscopy (EDS). Microhardness measurements were performed to determine the hardness values of TiWSiN thin films. The highest hardness value of 6.8 GPa was measured in the N-40 film. The presence of the predominant TiN (111) phase in the film’s microstructure has contributed to the increased hardness in the N-40 film. The tribological tests of TiWSiN thin films were investigated using a wear testing device and a 3D profilometer. The wear rates were calculated as 1.81×10-5 mm3/(N·m) for N-40 and 9.98×10-5 mm3/(N·m) for N-50. The results revealed that the wear resistance of the N-40 film, deposited at 4 sccm nitrogen flow, was approximately 5.5 times higher than that of N-50. Tribotest results showed that the wear depth profile of N-40 remained intact on the substrate. These findings indicate that the N-40 film exhibits better tribological performance. Consequently, it has been determined that the control of nitrogen flow rate directly affects the performance of TiWSiN thin films.
Kaynakça
-
Abadias, G. (2008). Stress and preferred orientation in nitride-based PVD coatings. Surface and Coatings Technology, 202(11), 2223–2235. https://doi.org/10.1016/j.surfcoat.2007.08.029
-
Azushima, A., Tanno, Y., Iwata, H., & Aoki, K. (2008). Coefficients of friction of TiN coatings with preferred grain orientations under dry condition. Wear, 265(7–8), 1017–1022. https://doi.org/10.1016/j.wear.2008.02.019
-
Bai, X. M., Zheng, W. T., Guo, X. J., & She, H. (2013). Microstructure, Interface and Hardness of Ti/TiN Nanolayered Coatings. Key Engineering Materials, 531, 645–650. https://doi.org/10.4028/www.scientific.net/KEM.531-532.645
-
Beake, B. D., & Fox-Rabinovich, G. S. (2014). Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining. Surface and Coatings Technology, 255, 102–111. https://doi.org/10.1016/j.surfcoat.2014.02.062
-
Benli, B., & Celik, I. (2024). Surface modification and analysis of St37 steel with Al2O3-TiO2, ZrO2, and Cr2O3 ceramic coatings: structural, mechanical, and tribological properties. Tribology International, 191, 109183. https://doi.org/10.1016/j.triboint.2023.109183
-
Chang, Y.-Y., Chang, H., Jhao, L.-J., & Chuang, C.-C. (2018). Tribological and mechanical properties of multilayered TiVN/TiSiN coatings synthesized by cathodic arc evaporation. Surface and Coatings Technology, 350, 1071–1079. https://doi.org/10.1016/j.surfcoat.2018.02.040
-
Chauhan, K. V, & Rawal, S. K. (2014). A review paper on tribological and mechanical properties of ternary nitride based coatings. Procedia Technology, 14, 430–437. https://doi.org/10.1016/j.protcy.2014.08.055
-
Chen, D. Y., Tsai, C. H., Yang, W. J., Liu, D. W., & Hsu, C. Y. (2016). Reactive co-sputter deposition and properties of CrAlSiN hard films for enhancement of cutting tools. International Journal of Refractory Metals and Hard Materials, 58, 110–116. https://doi.org/10.1016/j.ijrmhm.2016.04.006
-
Cicek, H., Acar, Y. E., Duran, S., Yilmaz, A. M., & Cakir, M. (2023). Structural and tribological properties of TiSiN films with different Si content. Thin Solid Films, 783, 140059. https://doi.org/10.1016/j.tsf.2023.140059
-
Çam, A. S., Ergüder, T. O., Kaya, G., & Yıldız, F. (2022). Improvement of structural/tribological properties and milling performances of tungsten carbide cutting tools by bilayer TiAlN/TiSiN and monolayer AlCrSiN ceramic films. Ceramics International, 48(18), 26342–26350. https://doi.org/10.1016/j.ceramint.2022.05.318
-
Çelik, İ. (2016). Influence of CrN coating on electrochemical behavior of plasma nitrided pure titanium in bio-simulated environment. Journal of Bionic Engineering, 13(1), 150-155. https://doi.org/10.1016/S1672-6529(14)60169-4
-
Çelik, İ., Karakan, M., & Bülbül, F. (2016). Investigation of structural and tribological properties of electroless Ni–B coated pure titanium. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230(1), 57-63. https://doi.org/10.1177/1350650115588568
-
Duan, L., Wu, H., Guo, L., Xiu, W., & Yu, X. (2020). The effect of phase on microstructure and mechanical performance in TiAlN and TiSiN films. Materials Research Express, 7(6), 066401. https://doi.org/10.1088/2053-1591/ab96f6
-
Dubey, P., Srivastava, S., Chandra, R., & Ramana, C. V. (2016). Toughness enhancement in zirconium-tungsten-nitride nanocrystalline hard coatings. AIP Advances, 6(7). https://doi.org/10.1063/1.4959224
-
Dursun, T., & Soutis, C. (2014). Recent developments in advanced aircraft aluminium alloys. Materials & Design (1980-2015), 56, 862–871. https://doi.org/10.1016/j.matdes.2013.12.002
-
He, J. L., Chen, C. K., & Hon, M. H. (1996). Micro structure and properties of TiSiN films prepared by plasma-enhanced chemical vapor deposition. Materials Chemistry and Physics, 44(1), 9–16. https://doi.org/10.1016/0254-0584(95)01655-E
-
Hu, W., Du, J., Liu, Z., Sun, X., & Chen, L. (2023). Structure, Mechanical and Thermal Properties of TiSiWN Coatings. Coatings, 13(1), 119. https://doi.org/10.3390/coatings13010119
-
Jehn, H. A. (2000). Multicomponent and multiphase hard coatings for tribological applications. Surface and Coatings Technology, 131(1–3), 433–440. https://doi.org/10.1016/S0257-8972(00)00783-0
-
Kelly, P. J., & Arnell, R. D. (2000). Magnetron sputtering: a review of recent developments and applications. Vacuum, 56(3), 159-172. https://doi.org/10.1016/S0042-207X(99)00189-X
-
Liu, J., Hao, Z., Cui, Z., Ma, D., Lu, J., Cui, Y., Li, C., Liu, W., Xie, S., & Huang, P. (2021). Investigation of the oxidation mechanisms of superlattice Cr-CrN/TiSiN-Cr multilayer coatings on Zircaloy substrates under high-temperature steam atmospheres. Corrosion Science, 192, 109782. https://doi.org/10.1016/j.corsci.2021.109782
-
Ljungcrantz, H., Odén, M., Hultman, L., Greene, J. E., & Sundgren, J. (1996). Nanoindentation studies of single‐crystal (001)‐,(011)‐, and (111)‐oriented TiN layers on MgO. Journal of Applied Physics, 80(12), 6725–6733. https://doi.org/10.1063/1.363799
-
Macías, H. A., Yate, L., Coy, E., Aperador, W., & Olaya, J. J. (2021). Insights and Optimization of the Structural and Mechanical Properties of TiWSiN Coatings using the Taguchi method. Applied Surface Science, 558, 149877. https://doi.org/10.1016/j.apsusc.2021.149877
-
Macías, H. A., Yate, L., Coy, L. E., Olaya, J. J., & Aperador, W. (2018). Effect of nitrogen flow ratio on microstructure, mechanical and tribological properties of TiWSiNx thin film deposited by magnetron co-sputtering. Applied Surface Science, 456, 445–456. https://doi.org/10.1016/j.apsusc.2018.06.129
-
Maher, M., Iraola-Arregui, I., Youcef, H. Ben, Rhouta, B., & Trabadelo, V. (2022). The synergistic effect of wear-corrosion in stainless steels: A review. Materials Today: Proceedings, 51, 1975–1990. https://doi.org/10.1016/j.matpr.2021.05.010
-
Miletić, A., Panjan, P., Škorić, B., Čekada, M., Dražič, G., & Kovač, J. (2014). Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering. Surface and Coatings Technology, 241, 105–111. https://doi.org/10.1016/j.surfcoat.2013.10.050
-
Moritz, Y., Saringer, C., Tkadletz, M., Stark, A., Schell, N., Letofsky-Papst, I., Czettl, C., Pohler, M., & Schalk, N. (2020). Oxidation behavior of arc evaporated TiSiN coatings investigated by in-situ synchrotron X-ray diffraction and HR-STEM. Surface and Coatings Technology, 404, 126632. https://doi.org/10.1016/j.surfcoat.2020.126632
-
Musil, J. (2000). Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 125(1-3), 322-330. https://doi.org/10.1016/S0257-8972(99)00586-1
-
Niederhofer, A., Bolom, T., Nesladek, P., Moto, K., Eggs, C., Patil, D. S., & Veprek, S. (2001). The role of percolation threshold for the control of the hardness and thermal stability of super-and ultrahard nanocomposites. Surface and Coatings Technology, 146, 183–188. https://doi.org/10.1016/S0257-8972(01)01469-4
-
Pei, F., Xu, Y. X., Chen, L., Du, Y., & Zou, H. K. (2018). Structure, mechanical properties and thermal stability of Ti1-xSixN coatings. Ceramics International, 44(13), 15503–15508. https://doi.org/10.1016/j.ceramint.2018.05.210
-
Peng, S., Xu, J., Li, Z., Jiang, S., Munroe, P., Xie, Z.-H., & Lu, H. (2020). A reactive-sputter-deposited TiSiN nanocomposite coating for the protection of metallic bipolar plates in proton exchange membrane fuel cells. Ceramics International, 46(3), 2743–2757. https://doi.org/10.1016/j.ceramint.2019.09.263
-
Qi, Z. B., Sun, P., Zhu, F. P., Wang, Z. C., Peng, D. L., & Wu, C. H. (2011). The inverse Hall–Petch effect in nanocrystalline ZrN coatings. Surface and Coatings Technology, 205(12), 3692–3697. https://doi.org/10.1016/j.surfcoat.2011.01.021
-
Sangiovanni, D. G., Hultman, L., Chirita, V., Petrov, I., & Greene, J. E. (2016). Effects of phase stability, lattice ordering, and electron density on plastic deformation in cubic TiWN pseudobinary transition-metal nitride alloys. Acta Materialia, 103, 823–835. https://doi.org/10.1016/j.actamat.2015.10.039
-
Shtansky, D. V, Kiryukhantsev-Korneev, P. V, Bashkova, I. A., Sheveiko, A. N., & Levashov, E. A. (2010). Multicomponent nanostructured films for various tribological applications. International Journal of Refractory Metals and Hard Materials, 28(1), 32–39. https://doi.org/10.1016/j.ijrmhm.2009.07.014
-
Sivapragash, M., Kumaradhas, P., Retnam, B. S. J., Joseph, X. F., & Pillai, U. T. S. (2016). Taguchi based genetic approach for optimizing the PVD process parameter for coating ZrN on AZ91D magnesium alloy. Materials & Design, 90, 713–722. https://doi.org/10.1016/j.matdes.2015.11.027
-
Thampi, V. V. A., Bendavid, A., & Subramanian, B. (2016). Nanostructured TiCrN thin films by Pulsed Magnetron Sputtering for cutting tool applications. Ceramics International, 42(8), 9940–9948. https://doi.org/10.1016/j.ceramint.2016.03.095
-
Tisza, M., & Czinege, I. (2018). Comparative study of the application of steels and aluminium in lightweight production of automotive parts. International Journal of Lightweight Materials and Manufacture, 1(4), 229–238. https://doi.org/10.1016/j.ijlmm.2018.09.001
-
Wang, D., Lin, S., Gong, Y., Shi, Q., Yang, H., Shi, J., Wang, W., Dai, M., Jiang, B., & Zhou, K. (2020). Solid particle erosion resistance of Cr-base gradient multilayer coatings. Surface and Coatings Technology, 402, 126352. https://doi.org/10.1016/j.surfcoat.2020.126352
-
Wuhrer, R., & Yeung, W. Y. (2003). Effect of target–substrate working distance on magnetron sputter deposition of nanostructured titanium aluminium nitride coatings. Scripta Materialia, 49(3), 199–205. https://doi.org/10.1016/S1359-6462(03)00264-1
-
Yang, J., Shou, D., Zhao, N., Tang, Y., Cao, H., Qi, F., & Ouyang, X. (2025). Interfacial structure, mechanical properties, and corrosion resistance of Cr/TiSiN nano-multilayer coating by filtered cathode vacuum arc technique. Journal of Manufacturing Processes, 136, 267–281. https://doi.org/10.1016/j.jmapro.2025.01.076
-
Yılmaz, A. M., Çiçek, H., Duran, S., Gülten, G., & Efeoğlu, İ. (2024). Investigation of hardness, tribological and adhesion properties of TiAlNiVN HEA films heat treated at different temperatures. Tribology International, 197, 109739. https://doi.org/10.1016/j.triboint.2024.109739
-
Zhu, J. Q., Johansson-Jöesaar, M. P., Polcik, P., Jensen, J., Greczynski, G., Hultman, L., & Odén, M. (2013). Influence of Ti–Si cathode grain size on the cathodic arc process and resulting Ti–Si–N coatings. Surface and Coatings Technology, 235, 637–647. https://doi.org/10.1016/j.surfcoat.2013.08.042
-
Zhu, Y., Dong, M., Li, J., & Wang, L. (2020). The improved corrosion and tribocorrosion properties of TiSiN/Ag by thermal treatment. Surface and Coatings Technology, 385, 125437. https://doi.org/10.1016/j.surfcoat.2020.125437