Araştırma Makalesi
BibTex RIS Kaynak Göster

Sensor-based monitoring of hydration and water behavior in cemented paste backfill with superplasticizer

Yıl 2025, Cilt: 15 Sayı: 3, 895 - 909, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1725482

Öz

This study aims to evaluate the effects of superplasticizer admixture on cemented paste backfill (CPB) using sensor-assisted monitoring techniques. In the experimental work, the development of hydration, water content, negative pore water pressure, and uniaxial compressive strength was investigated in CPB samples prepared with a polycarboxylate-based high-performance superplasticiser (YPSA) at dosages of 1%, 3.5%, and 6%. For the monitoring tests, the focus was on the control sample without admixture and the sample containing 6% admixture, and their time-dependent changes were evaluated in detail. The results showed that the YPSA admixture contributed to the formation of a denser microstructure by reducing the water/cement ratio (w/c), thereby creating significant effects on electrical conductivity, volumetric water content, and negative pore water pressure. Specifically, the 6% admixture dosage provided a significant increase in early and late-age strengths, offering the potential to accelerate the production cycle and increase efficiency in underground mining. The findings reveal that the YPSA admixture not only improves workability but also enhances the hydration process and mechanical performance, making it a promising approach for optimizing the durability and performance of cementitious backfill systems.

Kaynakça

  • Basçetin, A., Adıgüzel, D., Eker, H., Odabas, E., & Tuylu, S. (2021). Effects of puzzolanic materials in surface paste disposal by pilot-scale tests: observation of physical changes. International Journal of Environmental Science and Technology, 18, 949–964. https://doi.org/10.1007/s13762-020-02892-w
  • Basçetin, A., Adıgüzel, D., Eker, H., & Tüylü, S., (2022). The investigation of geochemical and geomechanical properties in surface paste disposal by pilot scale tests. International Journal of Mining, Reclamation and Environment, 36(8), 537–551. https://doi.org/10.1080/17480930.2022.2076501
  • Başçetin, A., Eker, H., Adıgüzel, D., & Tüylü, S. (2020). Çimentolu macun dolgu yönteminin uygulanmasında bazı katkı malzemelerinin puzolanik özelliklerinin araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(2), 415–424. https://doi.org/10.17714/gumusfenbil.627059
  • Benzaazoua, M., Fall, M., & Belem, T. (2004). A contribution to understanding the hardening process of cemented paste fill. Minerals Engineering, 17(2), 141–152. https://doi.org/10.1016/j.mineng.2003.10.022
  • Belem, T., & Benzaazoua, M. (2008). Design and application of underground mine paste backfill technology. Geotechnical and Geological Engineering, 26, 147–174. https://doi.org/10.1007/s10706-007-9154-3
  • Cavusoglu, I. (2024). Superplasticizer dosage effect on strength, microstructure and permeability enhancement of cementitious paste fills. Minerals, 14(12), 1242. https://doi.org/10.3390/min14121242
  • Cavusoglu, I., & Fall, M. (2023). Engineering properties of cemented paste backfill with full-range water-reducing admixture. International Journal of Civil Engineering, 21, 1567–1582. https://doi.org/10.1007/s40999-023-00849-x
  • Cavusoglu, I., Yilmaz, E., & Yilmaz, A. O. (2021). Additivity effect on fresh and hardened properties of cemented coal fly ash backfill containing water-reducing admixtures. Construction and Building Materials, 267, 121021. https://doi.org/10.1016/j.conbuildmat.2020.121021
  • Cihangir, F. (2017). Macun dolgu duraylılığının ultrasonik P–dalga hızı ile değerlendirilmesi. Yerbilimleri, 38(1), 15–32.
  • Collepardi, M. (1998). Admixtures used to enhance placing characteristics of concrete. Cement and Concrete Composites, 20(2–3), 103–112. https://doi.org/10.1016/S0958-9465(98)00071-7
  • Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H., & Alp, I. (2010). Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings. Journal of Hazardous Materials, 179(1–3), 940–946. https://doi.org/10.1016/j.jhazmat.2010.03.096
  • Fall, M., & Pokharel, M. (2010). Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement–paste backfill. Cement and Concrete Composites, 32(10), 819–828. https://doi.org/10.1016/j.cemconcomp.2010.08.002
  • Fall, M., Benzaazoua, M., & Saa, E. G. (2008). Mix proportioning of underground cemented tailings backfill. Tunnelling and Underground Space Technology, 23(1), 80–90.
  • Fang, K., Zhang, J., Cui, L., Haruna, S., & Li, M. (2023). Cost optimization of cemented paste backfill: State-of-the-art review and future perspectives. Minerals Engineering, 204, 108954. https://doi.org/10.1016/j.mineng.2023.108954
  • Gelardi, G., & Flatt, R. J. (2016). Working mechanisms of water reducers and superplasticizers. In P.-C. Aïtcin & R. J. Flatt (Eds.), Science and Technology of Concrete Admixtures (pp. 257–278). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100693-1.00011-4
  • Haruna, S., & Fall, M. (2020a). Strength development of cemented tailings materials containing polycarboxylate ether-based superplasticizer: Experimental results on the effect of time and temperature. Canadian Journal of Civil Engineering, 48(4), 1-38. https://doi.org/10.1139/cjce-2019-0809
  • Haruna, S., & Fall, M. (2020b). Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer. Powder Technology, 360, 731–740.
  • He, J., Cheng, C., Zhu, X., & Li, X. (2022). Effect of silica fume on the rheological properties of cement paste with ultra-low water binder ratio. Materials, 15(2), 554. https://doi.org/10.3390/ma15020554
  • Heikal, M., Morsy, M. S., & Aiad, I. (2005). Effect of treatment temperature on the early hydration characteristics of superplasticized silica fume blended cement pastes. Cement and Concrete Research, 35(4), 680–687. https://doi.org/10.1016/j.cemconres.2004.06.012
  • Huynh, L., Beattie, D. A., Fornasiero, D., & Ralston, J. (2006). Effect of polyphosphate and naphthalene sulfonate formaldehyde condensate on the rheological properties of dewatered tailings and cemented paste backfill. Minerals Engineering, 19(1), 28–36.
  • Kesimal, A., Yilmaz, E., & Ercikdi, B. (2004). Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cement and Concrete Research, 34(10), 1817–1822. https://doi.org/10.1016/j.cemconres.2004.01.018
  • Kesimal, A., Yilmaz, E., Ercikdi, B., Alp, I., Yumlu, M., & Özdemir, B. (2002). Çimentolu macun dolgunun laboratuvar testi. Bilimsel Madencilik Dergisi, 41(4), 11–20.
  • Klein, K., & Simon, D. (2006). Effect of specimen composition on the strength development in cemented paste backfill. Canadian Geotechnical Journal, 43(3), 310–324. https://doi.org/10.1139/t06-005
  • Koohestani, B., Darban, A. K., & Mokhtari, P. (2018). A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill. Construction and Building Materials, 173, 180–188. https://doi.org/10.1016/j.conbuildmat.2018.03.265
  • Mangane, M. B. C., Argane, R., Trauchessec, R., Lecomte, A., & Benzaazoua, M. (2018). Influence of superplasticizers on mechanical properties and workability of cemented paste backfill. Minerals Engineering, 116, 3–14.
  • Nasir, O., & Fall, M. (2008). Shear behaviour of cemented pastefill-rock interfaces. Engineering Geology, 101(3–4), 146–153. https://doi.org/10.1016/j.enggeo.2008.04.010
  • Ouattara, D., Belem, T., Mbonimpa, M., & Yahia, A. (2018a). Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers. Construction and Building Materials, 190, 294–307. https://doi.org/10.1016/j.conbuildmat.2018.09.066
  • Ouattara, D., Belem, T., Mbonimpa, M., & Yahia, A. (2018b). Effect of superplasticizers on the consistency and unconfined compressive strength of cemented paste backfills. Construction and Building Materials, 181, 59–72. https://doi.org/10.1016/j.conbuildmat.2018.05.288
  • Ouattara, D., Yahia, A., Mbonimpa, M., & Belem, T. (2017). Effects of superplasticizer on rheological properties of cemented paste backfills. International Journal of Mineral Processing, 161, 28–40. https://doi.org/10.1016/j.minpro.2017.02.003
  • Puertas, F., Santos, H., Palacios, M., & Martinez-Ramirez, S. (2005). Polycarboxylate superplasticiser admixtures: Effect on hydration, microstructure and rheological behaviour in cement pastes. Advances in Cement Research, 17(2), 77–89. https://doi.org/10.1680/adcr.17.2.77.65044
  • Sahu, H. B., Prakash, N., & Jayanthu, S. (2015). Underground mining for meeting environmental concerns – A strategic approach for sustainable mining in future. Procedia Earth and Planetary Science, 11, 232–241. https://doi.org/10.1016/j.proeps.2015.06.030
  • Saedi, A., Jamshidi-Zanjani, A., & Darban, A. K. (2021). A review of additives used in the cemented paste tailings: Environmental aspects and application. Journal of Environmental Management, 289, 112501. https://doi.org/10.1016/j.jenvman.2021.112501
  • Sakai, E., Kasuga, T., Sugiyama, T., Asaga, K., & Daimon, M. (2006). Influence of superplasticizers on the hydration of cement and the pore structure of hardened cement. Cement and Concrete Research, 36(11), 2049–2053. https://doi.org/10.1016/j.cemconres.2006.08.003
  • Wang, Y., Wang, Z., Wu, A., Wang, L., Na, Q., Cao, C., & Yang, G. (2023). Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives. International Journal of Mineral Metallurgy and Materials, 30, 193–208. https://doi.org/10.1007/s12613-022-2537-x
  • Wu, A., Wang, Y., Ruan, Z., Xiao, B., Wang, J., & Wang, L. (2024). Key theory and technology of cemented paste backfill for green mining of metal mines. Green and Smart Mining Engineering, 1(1), 27–39. https://doi.org/10.1016/j.gsme.2024.04.003
  • Xiao, B., Fall, M., & Roshani, A. (2020). Towards understanding the rheological properties of slag-cemented paste backfill. International Journal of Mining, Reclamation and Environment, 35(4), 268–290. https://doi.org/10.1080/17480930.2020.1807667
  • Yang, L., Yilmaz, E., Li, J., Liu, H., & Jiang, H. (2018). Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents. Construction and Building Materials, 187, 290–298. https://doi.org/10.1016/j.conbuildmat.2018.07.155
  • Yang, Y., Tan, Y., Li, Z., Zhou, G., Yu, X., Xu, D., Yong, Q., Zhao, H., & Xie, Z. (2024). Interaction mechanisms between polycarboxylate superplasticizers and cement, and the influence of functional groups on superplasticizer performance: A review. Polymer Bulletin, 81, 10415–10438. https://doi.org/10.1007/s00289-024-05233-w
  • Yilmaz, E., & Guresci, M. (2017). Design and characterization of underground paste backfill. In Yilmaz, E. & Fall, M. (Eds.), Paste Tailings Management (pp. 123–149). Springer. https://doi.org/10.1007/978-3-319-39682-8_5
  • Yilmaz, E., Kesimal, A., & Ercikdi, B. (2003). Macun dolgu dayanımını ve duraylılığını etkileyen faktörler. Hacettepe Üniversitesi Yerbilimleri Dergisi, 28(2), 155–169.
  • Zhang, J., Deng, H., Taheri, A., Deng, J., & Ke, B. (2018). Effects of superplasticizer on the hydration, consistency, and strength development of cemented paste backfill. Minerals, 8(9), 381. https://doi.org/10.3390/min8090381
  • Zhang, Q., Wu, H., Feng, Y., Wang, D., Su, H., & Li, X. (2023). Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate. International Journal of Mineral Metallurgy and Materials, 30, 225–235. https://doi.org/10.1007/s12613-021-2397-9
  • Zhao, Y. H., Zhou, X. H., Zhou, Q. S., Zhu, H. Y., Cheng, F. J., & Chen, H. D. (2024). Development of full-solid waste environmentally binder for cemented paste backfill. Construction and Building Materials, 443, 137689. https://doi.org/10.1016/j.conbuildmat.2024.137689
  • Zheng, J., Zhu, Y., & Zhao, Z. (2016). Utilization of limestone powder and water-reducing admixture in cemented paste backfill of coarse copper mine tailings. Construction and Building Materials, 124, 31–36. https://doi.org/10.1016/j.conbuildmat.2016.07.055

Süperakışkanlaştırıcı katkılı çimentolu macun dolgularda sensör tabanlı hidratasyon ve su davranışı izlemesi

Yıl 2025, Cilt: 15 Sayı: 3, 895 - 909, 15.09.2025
https://doi.org/10.17714/gumusfenbil.1725482

Öz

Bu çalışma, süperakışkanlaştırıcı katkı maddesinin çimentolu macun dolgu (ÇMD) üzerindeki etkilerini sensör destekli izleme teknikleriyle değerlendirmeyi amaçlamaktadır. Deneysel çalışmada, polikarboksilat esaslı yüksek performanslı süperakışkanlaştırıcı (YPSA) katkı, %1, %3,5 ve %6 oranlarında kullanılarak hazırlanan ÇMD numunelerinde hidratasyon, su içeriği, negatif boşluk suyu basıncı ve basınç dayanımı gelişimi incelenmiştir. İzleme testlerinde, katkısız kontrol numunesi ile %6 katkı içeren numuneye odaklanılmış ve zamana bağlı değişimler detaylı olarak değerlendirilmiştir. Sonuçlar, YPSA katkısının su/çimento (s/ç) oranını azaltarak daha yoğun bir mikroyapı oluşumuna katkıda bulunduğunu; bu sayede elektriksel iletkenlik, hacimsel su içeriği ve negatif boşluk suyu basıncı üzerinde belirgin etkiler yarattığını göstermiştir. Özellikle %6 katkı oranı, erken ve geç yaş dayanımlarında anlamlı artış sağlamış; üretim döngüsünü hızlandırma ve yeraltı madenciliğinde verimliliği artırma potansiyeli sunmuştur. Elde edilen bulgular, YPSA katkısının yalnızca işlenebilirliği değil, aynı zamanda hidratasyon sürecini ve mekanik performansı iyileştirerek sürdürülebilir dolgu uygulamaları açısından önemli avantajlar sağladığını ortaya koymaktadır.

Kaynakça

  • Basçetin, A., Adıgüzel, D., Eker, H., Odabas, E., & Tuylu, S. (2021). Effects of puzzolanic materials in surface paste disposal by pilot-scale tests: observation of physical changes. International Journal of Environmental Science and Technology, 18, 949–964. https://doi.org/10.1007/s13762-020-02892-w
  • Basçetin, A., Adıgüzel, D., Eker, H., & Tüylü, S., (2022). The investigation of geochemical and geomechanical properties in surface paste disposal by pilot scale tests. International Journal of Mining, Reclamation and Environment, 36(8), 537–551. https://doi.org/10.1080/17480930.2022.2076501
  • Başçetin, A., Eker, H., Adıgüzel, D., & Tüylü, S. (2020). Çimentolu macun dolgu yönteminin uygulanmasında bazı katkı malzemelerinin puzolanik özelliklerinin araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(2), 415–424. https://doi.org/10.17714/gumusfenbil.627059
  • Benzaazoua, M., Fall, M., & Belem, T. (2004). A contribution to understanding the hardening process of cemented paste fill. Minerals Engineering, 17(2), 141–152. https://doi.org/10.1016/j.mineng.2003.10.022
  • Belem, T., & Benzaazoua, M. (2008). Design and application of underground mine paste backfill technology. Geotechnical and Geological Engineering, 26, 147–174. https://doi.org/10.1007/s10706-007-9154-3
  • Cavusoglu, I. (2024). Superplasticizer dosage effect on strength, microstructure and permeability enhancement of cementitious paste fills. Minerals, 14(12), 1242. https://doi.org/10.3390/min14121242
  • Cavusoglu, I., & Fall, M. (2023). Engineering properties of cemented paste backfill with full-range water-reducing admixture. International Journal of Civil Engineering, 21, 1567–1582. https://doi.org/10.1007/s40999-023-00849-x
  • Cavusoglu, I., Yilmaz, E., & Yilmaz, A. O. (2021). Additivity effect on fresh and hardened properties of cemented coal fly ash backfill containing water-reducing admixtures. Construction and Building Materials, 267, 121021. https://doi.org/10.1016/j.conbuildmat.2020.121021
  • Cihangir, F. (2017). Macun dolgu duraylılığının ultrasonik P–dalga hızı ile değerlendirilmesi. Yerbilimleri, 38(1), 15–32.
  • Collepardi, M. (1998). Admixtures used to enhance placing characteristics of concrete. Cement and Concrete Composites, 20(2–3), 103–112. https://doi.org/10.1016/S0958-9465(98)00071-7
  • Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H., & Alp, I. (2010). Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings. Journal of Hazardous Materials, 179(1–3), 940–946. https://doi.org/10.1016/j.jhazmat.2010.03.096
  • Fall, M., & Pokharel, M. (2010). Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement–paste backfill. Cement and Concrete Composites, 32(10), 819–828. https://doi.org/10.1016/j.cemconcomp.2010.08.002
  • Fall, M., Benzaazoua, M., & Saa, E. G. (2008). Mix proportioning of underground cemented tailings backfill. Tunnelling and Underground Space Technology, 23(1), 80–90.
  • Fang, K., Zhang, J., Cui, L., Haruna, S., & Li, M. (2023). Cost optimization of cemented paste backfill: State-of-the-art review and future perspectives. Minerals Engineering, 204, 108954. https://doi.org/10.1016/j.mineng.2023.108954
  • Gelardi, G., & Flatt, R. J. (2016). Working mechanisms of water reducers and superplasticizers. In P.-C. Aïtcin & R. J. Flatt (Eds.), Science and Technology of Concrete Admixtures (pp. 257–278). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100693-1.00011-4
  • Haruna, S., & Fall, M. (2020a). Strength development of cemented tailings materials containing polycarboxylate ether-based superplasticizer: Experimental results on the effect of time and temperature. Canadian Journal of Civil Engineering, 48(4), 1-38. https://doi.org/10.1139/cjce-2019-0809
  • Haruna, S., & Fall, M. (2020b). Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer. Powder Technology, 360, 731–740.
  • He, J., Cheng, C., Zhu, X., & Li, X. (2022). Effect of silica fume on the rheological properties of cement paste with ultra-low water binder ratio. Materials, 15(2), 554. https://doi.org/10.3390/ma15020554
  • Heikal, M., Morsy, M. S., & Aiad, I. (2005). Effect of treatment temperature on the early hydration characteristics of superplasticized silica fume blended cement pastes. Cement and Concrete Research, 35(4), 680–687. https://doi.org/10.1016/j.cemconres.2004.06.012
  • Huynh, L., Beattie, D. A., Fornasiero, D., & Ralston, J. (2006). Effect of polyphosphate and naphthalene sulfonate formaldehyde condensate on the rheological properties of dewatered tailings and cemented paste backfill. Minerals Engineering, 19(1), 28–36.
  • Kesimal, A., Yilmaz, E., & Ercikdi, B. (2004). Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cement and Concrete Research, 34(10), 1817–1822. https://doi.org/10.1016/j.cemconres.2004.01.018
  • Kesimal, A., Yilmaz, E., Ercikdi, B., Alp, I., Yumlu, M., & Özdemir, B. (2002). Çimentolu macun dolgunun laboratuvar testi. Bilimsel Madencilik Dergisi, 41(4), 11–20.
  • Klein, K., & Simon, D. (2006). Effect of specimen composition on the strength development in cemented paste backfill. Canadian Geotechnical Journal, 43(3), 310–324. https://doi.org/10.1139/t06-005
  • Koohestani, B., Darban, A. K., & Mokhtari, P. (2018). A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill. Construction and Building Materials, 173, 180–188. https://doi.org/10.1016/j.conbuildmat.2018.03.265
  • Mangane, M. B. C., Argane, R., Trauchessec, R., Lecomte, A., & Benzaazoua, M. (2018). Influence of superplasticizers on mechanical properties and workability of cemented paste backfill. Minerals Engineering, 116, 3–14.
  • Nasir, O., & Fall, M. (2008). Shear behaviour of cemented pastefill-rock interfaces. Engineering Geology, 101(3–4), 146–153. https://doi.org/10.1016/j.enggeo.2008.04.010
  • Ouattara, D., Belem, T., Mbonimpa, M., & Yahia, A. (2018a). Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers. Construction and Building Materials, 190, 294–307. https://doi.org/10.1016/j.conbuildmat.2018.09.066
  • Ouattara, D., Belem, T., Mbonimpa, M., & Yahia, A. (2018b). Effect of superplasticizers on the consistency and unconfined compressive strength of cemented paste backfills. Construction and Building Materials, 181, 59–72. https://doi.org/10.1016/j.conbuildmat.2018.05.288
  • Ouattara, D., Yahia, A., Mbonimpa, M., & Belem, T. (2017). Effects of superplasticizer on rheological properties of cemented paste backfills. International Journal of Mineral Processing, 161, 28–40. https://doi.org/10.1016/j.minpro.2017.02.003
  • Puertas, F., Santos, H., Palacios, M., & Martinez-Ramirez, S. (2005). Polycarboxylate superplasticiser admixtures: Effect on hydration, microstructure and rheological behaviour in cement pastes. Advances in Cement Research, 17(2), 77–89. https://doi.org/10.1680/adcr.17.2.77.65044
  • Sahu, H. B., Prakash, N., & Jayanthu, S. (2015). Underground mining for meeting environmental concerns – A strategic approach for sustainable mining in future. Procedia Earth and Planetary Science, 11, 232–241. https://doi.org/10.1016/j.proeps.2015.06.030
  • Saedi, A., Jamshidi-Zanjani, A., & Darban, A. K. (2021). A review of additives used in the cemented paste tailings: Environmental aspects and application. Journal of Environmental Management, 289, 112501. https://doi.org/10.1016/j.jenvman.2021.112501
  • Sakai, E., Kasuga, T., Sugiyama, T., Asaga, K., & Daimon, M. (2006). Influence of superplasticizers on the hydration of cement and the pore structure of hardened cement. Cement and Concrete Research, 36(11), 2049–2053. https://doi.org/10.1016/j.cemconres.2006.08.003
  • Wang, Y., Wang, Z., Wu, A., Wang, L., Na, Q., Cao, C., & Yang, G. (2023). Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives. International Journal of Mineral Metallurgy and Materials, 30, 193–208. https://doi.org/10.1007/s12613-022-2537-x
  • Wu, A., Wang, Y., Ruan, Z., Xiao, B., Wang, J., & Wang, L. (2024). Key theory and technology of cemented paste backfill for green mining of metal mines. Green and Smart Mining Engineering, 1(1), 27–39. https://doi.org/10.1016/j.gsme.2024.04.003
  • Xiao, B., Fall, M., & Roshani, A. (2020). Towards understanding the rheological properties of slag-cemented paste backfill. International Journal of Mining, Reclamation and Environment, 35(4), 268–290. https://doi.org/10.1080/17480930.2020.1807667
  • Yang, L., Yilmaz, E., Li, J., Liu, H., & Jiang, H. (2018). Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents. Construction and Building Materials, 187, 290–298. https://doi.org/10.1016/j.conbuildmat.2018.07.155
  • Yang, Y., Tan, Y., Li, Z., Zhou, G., Yu, X., Xu, D., Yong, Q., Zhao, H., & Xie, Z. (2024). Interaction mechanisms between polycarboxylate superplasticizers and cement, and the influence of functional groups on superplasticizer performance: A review. Polymer Bulletin, 81, 10415–10438. https://doi.org/10.1007/s00289-024-05233-w
  • Yilmaz, E., & Guresci, M. (2017). Design and characterization of underground paste backfill. In Yilmaz, E. & Fall, M. (Eds.), Paste Tailings Management (pp. 123–149). Springer. https://doi.org/10.1007/978-3-319-39682-8_5
  • Yilmaz, E., Kesimal, A., & Ercikdi, B. (2003). Macun dolgu dayanımını ve duraylılığını etkileyen faktörler. Hacettepe Üniversitesi Yerbilimleri Dergisi, 28(2), 155–169.
  • Zhang, J., Deng, H., Taheri, A., Deng, J., & Ke, B. (2018). Effects of superplasticizer on the hydration, consistency, and strength development of cemented paste backfill. Minerals, 8(9), 381. https://doi.org/10.3390/min8090381
  • Zhang, Q., Wu, H., Feng, Y., Wang, D., Su, H., & Li, X. (2023). Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate. International Journal of Mineral Metallurgy and Materials, 30, 225–235. https://doi.org/10.1007/s12613-021-2397-9
  • Zhao, Y. H., Zhou, X. H., Zhou, Q. S., Zhu, H. Y., Cheng, F. J., & Chen, H. D. (2024). Development of full-solid waste environmentally binder for cemented paste backfill. Construction and Building Materials, 443, 137689. https://doi.org/10.1016/j.conbuildmat.2024.137689
  • Zheng, J., Zhu, Y., & Zhao, Z. (2016). Utilization of limestone powder and water-reducing admixture in cemented paste backfill of coarse copper mine tailings. Construction and Building Materials, 124, 31–36. https://doi.org/10.1016/j.conbuildmat.2016.07.055
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Maden Tasarımı, İşletme ve Ekonomisi, Maden Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

İbrahim Çavuşoğlu 0000-0003-0145-7523

Yayımlanma Tarihi 15 Eylül 2025
Gönderilme Tarihi 23 Haziran 2025
Kabul Tarihi 8 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Çavuşoğlu, İ. (2025). Süperakışkanlaştırıcı katkılı çimentolu macun dolgularda sensör tabanlı hidratasyon ve su davranışı izlemesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 15(3), 895-909. https://doi.org/10.17714/gumusfenbil.1725482