Derleme
BibTex RIS Kaynak Göster

Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası ve İskelet Kası İncelemesi

Yıl 2023, Cilt: 12 Sayı: 1, 334 - 340, 25.03.2023
https://doi.org/10.37989/gumussagbil.1224908

Öz

Kalp ve iskelet kasındaki metabolik değişimler ile anjiyogenez arasında yakın bir etkileşimin olduğu bilinmektedir. Ancak egzersizin bu iki doku üzerindeki etkisine bağlı olarak ortaya çıkaracağı anjiyojenik hareketliliğin serüveni tam anlamıyla aydınlığa kavuşturulamamıştır. Bu sebeple mevcut araştırma egzersizin fiziksel etkisine maruz kalan kalp kası ve iskelet kası dokularının fizyolojik anjiyogeneze nasıl cevaplar verdiğinin irdelenmesi amacı ile geleneksel derleme türünde hazırlanmıştır. Bu derleme yayın yılı kısıtlaması olmadan PubMed, Google Scholar, Web of Science ve ULAKBİM veri tabanlarındaki literatürden oluşturulmuştur. Literatür taramasında 4 Türkçe anahtar kelime (egzersiz, anjiyogenez, kalp kası, iskelet kası) ve bunların ingilizceleri kullanılarak ulaşılan yayınlar incelenmiştir. Egzersizin anjiyogenezi teşviki konusundaki rolü, anjiyogenez mekanizması üzerindeki etkisi ve doku yapısındaki anjiyonegez hareketliliğine olan katkısının derinlemesine tartışılması yeni terapötik hedefleri keşfetmeye rehberlik edebilir. Bu kapsamda çalışma egzersize bağlı anjiyogenezin kalp kası ve iskelet kasındaki yeniden modellenme mekanizmalarını ve fizyolojik çabasını açıklamaya yönelik sürdürülen araştırmalara odaklanmıştır. Yapılan literatür incelemesi ışığında egzersizin hem kalp kası hem de iskelet kasında fizyolojik anjiyogenezi modelleme konusundaki çabasının dikkate değer olduğu ve sporcularda sportif performans artışını önemli düzeyde etkileyebileceği ifade edilebilir.

Kaynakça

  • 1. Folkman, J. and Shing, Y. (1992) “Angiogenesis”. Journal of Biological Chemistry, 267 (16), 10931-10934.
  • 2. Vandekeere, S, Dewerchin, M. and Carmeliet, P. (2015). “Angiogenesis Revisited: An Overlooked Role of Endothelial Cell Metabolism in Vessel Sprouting”. Microcirculation, 22 (7), 509-517.
  • 3. Alvarez-García, V, González, A, Alonso-González, C. and Martínez-Campa, C. (2013). “Antiangiogenic Effects of Melatonin in Endothelial Cell Cultures”. Microvascular Research, 87, 25-33
  • 4. Rizov, M, Andreeva, P. and Dimova, I. (2017). “Molecular Regulation and Role of Angiogenesis in Reproduction. Taiwanese”. Journal of Obstetrics and Gynecology, 56 (2), 127-132.
  • 5. Gerbaud, P, Murthi, P, Guibourdenche, J. and Guimiot, F. (2019). “Study of Human T21 Placenta Suggests a Potential Role of Mesenchymal Spondin-2 in Placental Vascular Development”. Endocrinology, 160 (3), 684-698.
  • 6. DiPietro, L. A. (2016). “Angiogenesis and Wound Repair: When Enough is Enough”. Journal of Leukocyte Biology, 100 (5), 979-984.
  • 7. Shah, A.A, Kamal, M.A. and Akhtar, S. (2021). “Tumor Angiogenesis and VEGFR-2: Mechanism, Pathways And Current Biological Therapeutic Interventions”. Current Drug Metabolism, 22 (1), 50-59.
  • 8. Carmeliet, P. ve Jain, R. K. (2011). “Molecular Mechanisms and Clinical Applications of Angiogenesis”, Nature, 473 (7347), 298-307.
  • 9. Ma, Q, Reiter, R.J. and Chen, Y. (2020). “Role of Melatonin in Controlling Angiogenesis Under Physiological and Pathological Conditions”. Angiogenesis, 23 (2), 91-104.
  • 10. Fan, Z, Turiel, G, Ardicoglu, R. and Ghobrial, M. (2021). “Exercise-Induced Angiogenesis is Dependent on Metabolically Primed ATF3/4+ Endothelial Cells”. Cell Metabolism, 33 (9), 1793-1807.
  • 11. Murrant, C. L. and Sarelius, I. H. (2000). “Coupling of Muscle Metabolism and Muscle Blood Flow in Capillary Units During Contraction”. Acta Physiologica Scandinavica, 168 (4), 531-541.
  • 12. Bloor, C. M. (2005). “Angiogenesis During Exercise and Training”. Angiogenesis, 8 (3), 263-271.
  • 13. Egan, B. and Zierath, J. R. (2013). “Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation”. Cell Metabolism, 17 (2), 162-184.
  • 14. Gorski, T. and De Bock, K. (2019). “Metabolic Regulation of Exercise-induced Angiogenesis. Vascular Biology, 1 (1), H1-H8.
  • 15. Franses, J. W. and Edelman, E. R. (2011). “The Evolution of Endothelial Regulatory Paradigms in Cancer Biology and Vascular Repair Endothelium in Vascular Disease and Cancer”. Cancer Research, 71 (24), 7339-7344.
  • 16. Harvey, W. (2020). “An Anatomical Disquisition on the Motion of the Heart and Blood in Animals”. Annals of Noninvasive Electrocardiology, 5, 196–203.
  • 17. Mousa, S.A. and Davis, P.J. (Eds.). (2014). “Angiogenesis Modulations in Health and Disease: Practical Applications of Pro-and Anti-angiogenesis Targets”. Springer Science & Business Media.
  • 18. Bussolino, F, Mantovani, A. and Persico, G. (1997). “Molecular Mechanisms of Blood Vessel Formation”. Trends in Biochemical Sciences, 22 (7), 251-256.
  • 19. Uccelli, A, Wolff, T, Valente, P. and Di Maggio, N. (2019). “Vascular Endothelial Growth Factor Biology for Regenerative Angiogenesis”. Swiss Medical Weekly, 149 (0304).
  • 20. Muppala, S. (2021). “Growth Factor-Induced Angiogenesis in Hepatocellular Carcinoma”. Critical ReviewsTM in Oncogenesis, 26 (1).
  • 21. Rundhaug, J.E. (2005). “Matrix Metalloproteinases and Angiogenesis”. Journal of Cellular and Molecular Medicine, 9 (2), 267-285.
  • 22. Stetler-Stevenson, W.G. (1999). “Matrix Metalloproteinases in Angiogenesis: a Moving Target for Therapeutic Intervention”. The Journal of Clinical Investigation, 103 (9), 1237-1241.
  • 23. Rozario, T. and DeSimone, D.W. (2010). “The Extracellular Matrix in Development and Morphogenesis: a Dynamic View”. Developmental Biology, 341 (1), 126-140.
  • 24. Kalluri, R. (2003). “Basement Membranes: Structure, Assembly and Role in Tumour Angiogenesis”. Nature Reviews Cancer, 3 (6), 422-433.
  • 25. Kerbel, R. and Folkman, J. (2002). “Clinical Translation of Angiogenesis Inhibitors”. Nature Reviews Cancer, 2 (10), 727-739.
  • 26. Qi C, Song X, Wang H. and Yan Y. (2022). “The Role of Exercise-Induced Myokines in Promoting Angiogenesis”. Frontiers Physiol. 2022 Aug 26 (13), 1-10.
  • 27. Tryfonos, A, Tzanis, G, Pitsolis, T, and Karatzanos, E. (2021). “Exercise Training Enhances Angiogenesis-Related Gene Responses in Skeletal Muscle of Patients With Chronic Heart Failure”. Cells, 10 (8), 1915.
  • 28. Morland, C, Andersson, K.A, Haugen, Ø.P. and Hadzic, A. (2017). “Exercise Induces Cerebral VEGF and Angiogenesis Via the Lactate Receptor HCAR1”. Nature Communications, 8 (1), 1-9.
  • 29. Fan, Z, Turiel, G, Ardicoglu, R. and Ghobrial, M. (2021). “Exercise-Induced Angiogenesis is Dependent on Metabolically Primed ATF3/4+ Endothelial Cells”. Cell Metabolism, 33 (9), 1793-1807.
  • 30. Yasul, Y. (2021). Farklı Egzersizler Uygulanan Ratlarda Koenzim Q10 Takviyesinin Serum, Kalp Kası ve İskelet Kaslarinda Tümstatin Ekpresyonlarına ve Lipit Profiline Etkisi. Yayımlanmamış Doktora Tezi. İnönü Üniversitesi Sağlık Bilimleri Entitüsü, Malatya.
  • 31. Potente, M, Gerhardt, H. and Carmeliet, P. (2011). “Basic and Therapeutic Aspects of Angiogenesis”. Cell, 146 (6), 873-887.
  • 32. Waters RE, Rotevatn S, Li P. and Annex BH. (2004). “Voluntary Running Induces Fiber Type-Specific Angiogenesis in Mouse Skeletal Muscle”. American Journal Physiologia. 287, 1342-1348.
  • 33. Breen, E.C, Johnson, E.C, Wagner, H. and Tseng, H.M. (1996). Angiogenic Growth Factor mRNA Responses in Muscle to a Single Bout of Exercise”. Journal of Applied Physiology, 81 (1), 355-361.
  • 34. Gogiraju R, Bochenek M.L. and Schäfer K. (2019). “Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure”. Frontiers in Cardiovascular Medicine. 6, 20.
  • 35. Delavar, H, Nogueira, L, Wagner, P.D. and Hogan, M. C. (2014). “Skeletal Myofiber VEGF is Essential for the Exercise Training Response in Adult Mice. American Journal of Physiology-Regulatory”. Integrative and Comparative Physiology, 306 (8), 586-595.
  • 36. Osada, T. and Rådegran, G. (2016). “Difference in Muscle Blood Flow Fluctuations Between Dynamic and Static Thigh Muscle Contractions: How to Evaluate Exercise Blood Flow by Doppler Ultrasound”. Physical Medicine and Rehabilitation Research 1, 1-7.
  • 37. Cheng, A.J, Jude, B. and Lanner, J.T. (2020). “Intramuscular Mechanisms of Overtraining”. Redox Biology, 35, 101480.
  • 38. Li, J, Li, Y, Atakan, M.M, Kuang, J. and Hu, Y. Bishop, (2020). “The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia”. Antioxidants, 9 (8), 656.
  • 39. Bekhite, M.M, Finkensieper, A., Binas. and S. Müller, J. (2011). “VEGF-Mediated PI3K Class IA and PKC Signaling in Cardiomyogenesis and Vasculogenesis of Mouse Embryonic Stem Cells”. Journal of Cell Science, 124 (11), 1819-1830.
  • 40. Prior, B. M. Yang H.T. and Terjung R.L. (2004). “What Makes Vessels Grow With Exercise Training”. 97 (3), 1121-1128.
  • 41. Koch, S. and Claesson-Welsh, L. (2012). “Signal Transduction by Vascular Endothelial Growth Factor Receptors”. Cold Spring Harbor perspectives in Medicine, 2 (7), a006502.
  • 42. Ardakanizade, M. (2018). “The Effects of Mid-and Long-Term Endurance Exercise on Heart Angiogenesis and Oxidative Stress”. Iranian Journal of Basic Medical Sciences, 21 (8), 800.
  • 43. Dariushnejad, H, Mohammadi. M, and Ghorbanzadeh, V. (2018). “Crocin and Voluntary Exercise Promote Heart Angiogenesis Through Akt and ERK1/2 Signalling in Type 2 Diabetic Rats”. Bratislavske Lekarske Listy, 119 (12), 757-761.
  • 44. Pourheydar, B, Biabanghard, A, Azari, R. and Khalaji, N. (2020). “Exercise İmproves Aging-related Decreased Angiogenesis Through Modulating VEGF-A, TSP-1 and p-NF-Ƙb Protein Levels in Myocardiocytes”. Journal of Cardiovascular and Thoracic Research, 12 (2), 129.
  • 45. Xi, Y, Hao, M, Liang, Q. and Li, Y. (2021). “Dynamic Resistance Exercise Increases Skeletal Muscle-derived FSTL1 Inducing Kardiac Angiogenesis Via DIP2A-Smad2/3 in Rats Following Myocardial Infarction”. Journal of Sport and Health Science, 10 (5), 594-603.

Physiological Changes in the Mechanism of Angiogenesis Modeled by Exercise: A review of Cardiac and Skeletal Muscles

Yıl 2023, Cilt: 12 Sayı: 1, 334 - 340, 25.03.2023
https://doi.org/10.37989/gumussagbil.1224908

Öz

It is known that there is a close interaction between angiogenesis and metabolic changes in the heart and skeletal muscle. However, the adventure of angiogenic mobility, which will be revealed by the effect of exercise on these two tissues, has not been fully clarified. For this reason, the present study was prepared in a traditional review type with the aim of examining how cardiac muscle and skeletal muscle tissues, which are exposed to the physical effects of exercise, respond to physiological angiogenesis. The research was obtained from PubMed, Google Scholar, Web of Science and ULAKBİM databases without the limitation of publication year. In the literature review, the publications reached using 4 Turkish keywords (exercise, angiogenesis, heart muscle, skeletal muscle) and their English versions were examined. An in-depth discussion of the role of exercise in promoting angiogenesis, its effect on the mechanism of angiogenesis, and its contribution to angiogenesis in tissue structure may guide the discovery of new therapeutic targets. In this context, the study focused on ongoing research to explain the remodeling mechanisms and physiological effort of exercise-induced angiogenesis in cardiac and skeletal muscle. In the light of the literature review, it can be stated that the effort of exercise in modeling physiological angiogenesis in both cardiac and skeletal muscle is remarkable and can significantly affect the increase in sportive performance in athletes.

Kaynakça

  • 1. Folkman, J. and Shing, Y. (1992) “Angiogenesis”. Journal of Biological Chemistry, 267 (16), 10931-10934.
  • 2. Vandekeere, S, Dewerchin, M. and Carmeliet, P. (2015). “Angiogenesis Revisited: An Overlooked Role of Endothelial Cell Metabolism in Vessel Sprouting”. Microcirculation, 22 (7), 509-517.
  • 3. Alvarez-García, V, González, A, Alonso-González, C. and Martínez-Campa, C. (2013). “Antiangiogenic Effects of Melatonin in Endothelial Cell Cultures”. Microvascular Research, 87, 25-33
  • 4. Rizov, M, Andreeva, P. and Dimova, I. (2017). “Molecular Regulation and Role of Angiogenesis in Reproduction. Taiwanese”. Journal of Obstetrics and Gynecology, 56 (2), 127-132.
  • 5. Gerbaud, P, Murthi, P, Guibourdenche, J. and Guimiot, F. (2019). “Study of Human T21 Placenta Suggests a Potential Role of Mesenchymal Spondin-2 in Placental Vascular Development”. Endocrinology, 160 (3), 684-698.
  • 6. DiPietro, L. A. (2016). “Angiogenesis and Wound Repair: When Enough is Enough”. Journal of Leukocyte Biology, 100 (5), 979-984.
  • 7. Shah, A.A, Kamal, M.A. and Akhtar, S. (2021). “Tumor Angiogenesis and VEGFR-2: Mechanism, Pathways And Current Biological Therapeutic Interventions”. Current Drug Metabolism, 22 (1), 50-59.
  • 8. Carmeliet, P. ve Jain, R. K. (2011). “Molecular Mechanisms and Clinical Applications of Angiogenesis”, Nature, 473 (7347), 298-307.
  • 9. Ma, Q, Reiter, R.J. and Chen, Y. (2020). “Role of Melatonin in Controlling Angiogenesis Under Physiological and Pathological Conditions”. Angiogenesis, 23 (2), 91-104.
  • 10. Fan, Z, Turiel, G, Ardicoglu, R. and Ghobrial, M. (2021). “Exercise-Induced Angiogenesis is Dependent on Metabolically Primed ATF3/4+ Endothelial Cells”. Cell Metabolism, 33 (9), 1793-1807.
  • 11. Murrant, C. L. and Sarelius, I. H. (2000). “Coupling of Muscle Metabolism and Muscle Blood Flow in Capillary Units During Contraction”. Acta Physiologica Scandinavica, 168 (4), 531-541.
  • 12. Bloor, C. M. (2005). “Angiogenesis During Exercise and Training”. Angiogenesis, 8 (3), 263-271.
  • 13. Egan, B. and Zierath, J. R. (2013). “Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation”. Cell Metabolism, 17 (2), 162-184.
  • 14. Gorski, T. and De Bock, K. (2019). “Metabolic Regulation of Exercise-induced Angiogenesis. Vascular Biology, 1 (1), H1-H8.
  • 15. Franses, J. W. and Edelman, E. R. (2011). “The Evolution of Endothelial Regulatory Paradigms in Cancer Biology and Vascular Repair Endothelium in Vascular Disease and Cancer”. Cancer Research, 71 (24), 7339-7344.
  • 16. Harvey, W. (2020). “An Anatomical Disquisition on the Motion of the Heart and Blood in Animals”. Annals of Noninvasive Electrocardiology, 5, 196–203.
  • 17. Mousa, S.A. and Davis, P.J. (Eds.). (2014). “Angiogenesis Modulations in Health and Disease: Practical Applications of Pro-and Anti-angiogenesis Targets”. Springer Science & Business Media.
  • 18. Bussolino, F, Mantovani, A. and Persico, G. (1997). “Molecular Mechanisms of Blood Vessel Formation”. Trends in Biochemical Sciences, 22 (7), 251-256.
  • 19. Uccelli, A, Wolff, T, Valente, P. and Di Maggio, N. (2019). “Vascular Endothelial Growth Factor Biology for Regenerative Angiogenesis”. Swiss Medical Weekly, 149 (0304).
  • 20. Muppala, S. (2021). “Growth Factor-Induced Angiogenesis in Hepatocellular Carcinoma”. Critical ReviewsTM in Oncogenesis, 26 (1).
  • 21. Rundhaug, J.E. (2005). “Matrix Metalloproteinases and Angiogenesis”. Journal of Cellular and Molecular Medicine, 9 (2), 267-285.
  • 22. Stetler-Stevenson, W.G. (1999). “Matrix Metalloproteinases in Angiogenesis: a Moving Target for Therapeutic Intervention”. The Journal of Clinical Investigation, 103 (9), 1237-1241.
  • 23. Rozario, T. and DeSimone, D.W. (2010). “The Extracellular Matrix in Development and Morphogenesis: a Dynamic View”. Developmental Biology, 341 (1), 126-140.
  • 24. Kalluri, R. (2003). “Basement Membranes: Structure, Assembly and Role in Tumour Angiogenesis”. Nature Reviews Cancer, 3 (6), 422-433.
  • 25. Kerbel, R. and Folkman, J. (2002). “Clinical Translation of Angiogenesis Inhibitors”. Nature Reviews Cancer, 2 (10), 727-739.
  • 26. Qi C, Song X, Wang H. and Yan Y. (2022). “The Role of Exercise-Induced Myokines in Promoting Angiogenesis”. Frontiers Physiol. 2022 Aug 26 (13), 1-10.
  • 27. Tryfonos, A, Tzanis, G, Pitsolis, T, and Karatzanos, E. (2021). “Exercise Training Enhances Angiogenesis-Related Gene Responses in Skeletal Muscle of Patients With Chronic Heart Failure”. Cells, 10 (8), 1915.
  • 28. Morland, C, Andersson, K.A, Haugen, Ø.P. and Hadzic, A. (2017). “Exercise Induces Cerebral VEGF and Angiogenesis Via the Lactate Receptor HCAR1”. Nature Communications, 8 (1), 1-9.
  • 29. Fan, Z, Turiel, G, Ardicoglu, R. and Ghobrial, M. (2021). “Exercise-Induced Angiogenesis is Dependent on Metabolically Primed ATF3/4+ Endothelial Cells”. Cell Metabolism, 33 (9), 1793-1807.
  • 30. Yasul, Y. (2021). Farklı Egzersizler Uygulanan Ratlarda Koenzim Q10 Takviyesinin Serum, Kalp Kası ve İskelet Kaslarinda Tümstatin Ekpresyonlarına ve Lipit Profiline Etkisi. Yayımlanmamış Doktora Tezi. İnönü Üniversitesi Sağlık Bilimleri Entitüsü, Malatya.
  • 31. Potente, M, Gerhardt, H. and Carmeliet, P. (2011). “Basic and Therapeutic Aspects of Angiogenesis”. Cell, 146 (6), 873-887.
  • 32. Waters RE, Rotevatn S, Li P. and Annex BH. (2004). “Voluntary Running Induces Fiber Type-Specific Angiogenesis in Mouse Skeletal Muscle”. American Journal Physiologia. 287, 1342-1348.
  • 33. Breen, E.C, Johnson, E.C, Wagner, H. and Tseng, H.M. (1996). Angiogenic Growth Factor mRNA Responses in Muscle to a Single Bout of Exercise”. Journal of Applied Physiology, 81 (1), 355-361.
  • 34. Gogiraju R, Bochenek M.L. and Schäfer K. (2019). “Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure”. Frontiers in Cardiovascular Medicine. 6, 20.
  • 35. Delavar, H, Nogueira, L, Wagner, P.D. and Hogan, M. C. (2014). “Skeletal Myofiber VEGF is Essential for the Exercise Training Response in Adult Mice. American Journal of Physiology-Regulatory”. Integrative and Comparative Physiology, 306 (8), 586-595.
  • 36. Osada, T. and Rådegran, G. (2016). “Difference in Muscle Blood Flow Fluctuations Between Dynamic and Static Thigh Muscle Contractions: How to Evaluate Exercise Blood Flow by Doppler Ultrasound”. Physical Medicine and Rehabilitation Research 1, 1-7.
  • 37. Cheng, A.J, Jude, B. and Lanner, J.T. (2020). “Intramuscular Mechanisms of Overtraining”. Redox Biology, 35, 101480.
  • 38. Li, J, Li, Y, Atakan, M.M, Kuang, J. and Hu, Y. Bishop, (2020). “The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia”. Antioxidants, 9 (8), 656.
  • 39. Bekhite, M.M, Finkensieper, A., Binas. and S. Müller, J. (2011). “VEGF-Mediated PI3K Class IA and PKC Signaling in Cardiomyogenesis and Vasculogenesis of Mouse Embryonic Stem Cells”. Journal of Cell Science, 124 (11), 1819-1830.
  • 40. Prior, B. M. Yang H.T. and Terjung R.L. (2004). “What Makes Vessels Grow With Exercise Training”. 97 (3), 1121-1128.
  • 41. Koch, S. and Claesson-Welsh, L. (2012). “Signal Transduction by Vascular Endothelial Growth Factor Receptors”. Cold Spring Harbor perspectives in Medicine, 2 (7), a006502.
  • 42. Ardakanizade, M. (2018). “The Effects of Mid-and Long-Term Endurance Exercise on Heart Angiogenesis and Oxidative Stress”. Iranian Journal of Basic Medical Sciences, 21 (8), 800.
  • 43. Dariushnejad, H, Mohammadi. M, and Ghorbanzadeh, V. (2018). “Crocin and Voluntary Exercise Promote Heart Angiogenesis Through Akt and ERK1/2 Signalling in Type 2 Diabetic Rats”. Bratislavske Lekarske Listy, 119 (12), 757-761.
  • 44. Pourheydar, B, Biabanghard, A, Azari, R. and Khalaji, N. (2020). “Exercise İmproves Aging-related Decreased Angiogenesis Through Modulating VEGF-A, TSP-1 and p-NF-Ƙb Protein Levels in Myocardiocytes”. Journal of Cardiovascular and Thoracic Research, 12 (2), 129.
  • 45. Xi, Y, Hao, M, Liang, Q. and Li, Y. (2021). “Dynamic Resistance Exercise Increases Skeletal Muscle-derived FSTL1 Inducing Kardiac Angiogenesis Via DIP2A-Smad2/3 in Rats Following Myocardial Infarction”. Journal of Sport and Health Science, 10 (5), 594-603.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derlemeler
Yazarlar

Yavuz Yasul 0000-0002-9458-1664

Taner Akbulut 0000-0003-2500-1117

Muhammet Enes Yasul 0000-0002-1423-9579

Yayımlanma Tarihi 25 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 1

Kaynak Göster

APA Yasul, Y., Akbulut, T., & Yasul, M. E. (2023). Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası ve İskelet Kası İncelemesi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 12(1), 334-340. https://doi.org/10.37989/gumussagbil.1224908
AMA Yasul Y, Akbulut T, Yasul ME. Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası ve İskelet Kası İncelemesi. Gümüşhane Sağlık Bilimleri Dergisi. Mart 2023;12(1):334-340. doi:10.37989/gumussagbil.1224908
Chicago Yasul, Yavuz, Taner Akbulut, ve Muhammet Enes Yasul. “Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası Ve İskelet Kası İncelemesi”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12, sy. 1 (Mart 2023): 334-40. https://doi.org/10.37989/gumussagbil.1224908.
EndNote Yasul Y, Akbulut T, Yasul ME (01 Mart 2023) Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası ve İskelet Kası İncelemesi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12 1 334–340.
IEEE Y. Yasul, T. Akbulut, ve M. E. Yasul, “Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası ve İskelet Kası İncelemesi”, Gümüşhane Sağlık Bilimleri Dergisi, c. 12, sy. 1, ss. 334–340, 2023, doi: 10.37989/gumussagbil.1224908.
ISNAD Yasul, Yavuz vd. “Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası Ve İskelet Kası İncelemesi”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12/1 (Mart 2023), 334-340. https://doi.org/10.37989/gumussagbil.1224908.
JAMA Yasul Y, Akbulut T, Yasul ME. Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası ve İskelet Kası İncelemesi. Gümüşhane Sağlık Bilimleri Dergisi. 2023;12:334–340.
MLA Yasul, Yavuz vd. “Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası Ve İskelet Kası İncelemesi”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, c. 12, sy. 1, 2023, ss. 334-40, doi:10.37989/gumussagbil.1224908.
Vancouver Yasul Y, Akbulut T, Yasul ME. Egzersize Bağlı Modellenen Anjiyogenez Mekanizmasında Fizyolojik Değişimler: Kalp Kası ve İskelet Kası İncelemesi. Gümüşhane Sağlık Bilimleri Dergisi. 2023;12(1):334-40.