Araştırma Makalesi
BibTex RIS Kaynak Göster

Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management

Yıl 2023, Cilt: 12 Sayı: 2, 377 - 385, 18.06.2023
https://doi.org/10.37989/gumussagbil.1284009

Öz

This study aims to investigate the competency areas and skill sets demanded on the job market for health information management (HIM), which plays a vital role in sustaining and enhancing the quality and efficacy of health services. In accordance with this objective, a semantic content analysis was performed on online HIM job postings using a quantitative method based on text mining and probabilistic topic modeling to identify the expertise roles and skill sets as semantic topics. Our findings revealed ten expertise roles and twenty-four skills that represent a broad spectrum of HIM professions’ competency requirements. “Specialist” (17.57%), “Director” (17.05%), “Manager” (13.18%), “Coder” (12.40%), and “Technician” (11.11%) are the top five expertise roles for HIM. A competency taxonomy was developed for HIM professions based on the knowledge and skills revealed by 24 topics using topic modeling analysis. The HIM competencies were categorized as “Medical Knowledge” (39.92%), “Management Skills” (29.80%), “IT Skills” (16.09%), and “Soft Skills” (14.18%). Our findings may have significant implications for HIM candidates and professionals, healthcare industries, and academic institutions in their efforts to comprehend, evaluate, and develop the necessary competencies and skills for HIM careers.

Kaynakça

  • 1. Fenton, S.H, Low, S, Abrams, K.J. and Butler-Henderson, K. (2017). “Health Information Management: Changing with Time”. In Yearbook of Medical Informatics 26 (1), 72–77. https://doi.org/10.15265/IY-2017-021
  • 2. Beesley, K, McLeod, A, Hewitt, B. and Moczygemba, J. (2021). “Health Information Management Reimagined: Assessing Current Professional Skills and Industry Demand”. Perspectives in Health Information Management, 18 (Winter).
  • 3. Berg, M. (2004). “Health Information Management: Integrating Information Technology in Health Care Work”. Psychology Press.
  • 4. Ehrenstein, V, Kharrazi, H, Lehmann, H. and Taylor, C.O. (2019). “Obtaining Data from Electronic Health Records”. Tools and Technologies for Registry Interoperability, Registries for Evaluating Patient Outcomes: A User’s Guide, 1–92.
  • 5. Gurcan, F, Boztas, G.D, Dalveren, G.G.M. and Derawi, M. (2023). “Digital Transformation Strategies, Practices, and Trends: A Large-Scale Retrospective Study Based on Machine Learning”. Sustainability, 15 (9), 7496. https://doi.org/10.3390/su15097496
  • 6. Wager, K.A, Lee, F.W. and Glaser, J.P. (2021). “Health Care Information Systems: A Practical Approach for Health Care Management”. John Wiley and Sons.
  • 7. Blei, D.M. (2012). “Probabilistic Topic Models”. Communications of the ACM, 55 (4), 77–84.
  • 8. Ozyurt, O, Gurcan, F, Dalveren, G.G.M. and Derawi, M. (2022). “Career in Cloud Computing: Exploratory Analysis of In-Demand Competency Areas and Skill Sets”. Applied Sciences, 12 (19), 9787.
  • 9. Indeed. (2023). Job Search | Indeed. https://www.indeed.com/
  • 10. Gurcan, F, Dalveren, G.G.M, Cagiltay, N. E. and Soylu, A. (2022). “Detecting Latent Topics and Trends in Software Engineering Research Since 1980 Using Probabilistic Topic Modeling”. IEEE Access, 10, 74638–74654. https://doi.org/10.1109/ACCESS.2022.3190632
  • 11. Gurcan, F. and Cagiltay, N.E. (2022). “Exploratory Analysis of Topic Interests and Their Evolution in Bioinformatics Research Using Semantic Text Mining and Probabilistic Topic Modeling”. IEEE Access, 10, 31480–31493. https://doi.org/10.1109/ACCESS.2022.3160795
  • 12. Srivastava, A.N. and Sahami, M. (2009). “Text Mining: Classification, Clustering, and Applications”. CRC Press.
  • 13. Karl, A, Wisnowski, J. and Rushing, W.H. (2015). “A Practical Guide to Text Mining with Topic Extraction”. Wiley Interdisciplinary Reviews: Computational Statistics, 7 (5), 326–340.
  • 14. Gurcan, F, Dalveren, G.G.M, Cagiltay, N.E, Roman, D. and Soylu, A. (2022). “Evolution of Software Testing Strategies and Trends: Semantic Content Analysis of Software Research Corpus of the Last 40 Years”. IEEE Access, 10, 106093–106109. https://doi.org/10.1109/ACCESS.2022.3211949
  • 15. Gurcan, F. (2019). “Extraction of Core Competencies for Big Data: Implications for Competency-Based Engineering Education”. International Journal of Engineering Education, 35 (4), 1110–1115.
  • 16. Blei, D.M, Ng, A.Y. and Jordan, M.I. (2003). “Latent Dirichlet Allocation”. Journal of Machine Learning Research, 3 (4/5), 993–1022.
  • 17. Gurcan, F, Cagiltay, N.E. and Cagiltay, K. (2021). “Mapping Human–Computer Interaction Research Themes and Trends from Its Existence to Today: A Topic Modeling-Based Review of past 60 Years”. International Journal of Human-Computer Interaction, 37 (3), 267–280. https://doi.org/10.1080/10447318.2020.1819668
  • 18. Blei, D.M. and Lafferty, J.D. (2007). “Correction: A Correlated Topic Model of Science”. The Annals of Applied Statistics, 1 (2), 634–634. https://doi.org/10.1214/07-aoas136
  • 19. Vayansky, I. and Kumar, S.A.P. (2020). “A Review of Topic Modeling Methods”. Information Systems, 94. https://doi.org/10.1016/j.is.2020.101582
  • 20. Řehůřek, R. and Sojka, P. (2011). “Gensim—Statistical Semantics in Python”. In Lecture Notes in Computer Science.
  • 21. Röder, M, Both, A. and Hinneburg, A. (2015). “Exploring The Space of Topic Coherence Measures”. WSDM 2015 - Proceedings of the 8th ACM International Conference on Web Search and Data Mining. https://doi.org/10.1145/2684822.2685324
  • 22. Mimno, D, Wallach, H. M, Talley, E, Leenders, M. and McCallum, A. (2011). “Optimizing Semantic Coherence in Topic Models”. EMNLP 2011 - Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference.
  • 23. Gurcan, F. and Ozyurt, O. (2020). “Emerging Trends and Knowledge Domains in E-Learning Researches: Topic Modeling Analysis with the Article Published between 2008-2018”. Journal of Computer and Education Research, 8 (16), 738–756. https://doi.org/10.18009/jcer.769349
  • 24. Bates, M, Black, C, Blair, F, Davis, L, Ingram, S, Lane, D. Q, McElderry, A, Peagler, B, Pickett, J, Plettenberg, C. and Hart-Hester, S. (2014). “Perceptions of Health Information Management Educational and Practice Experiences”. Perspectives in Health Information Management / AHIMA, American Health Information Management Association, 11.
  • 25. Gurcan, F. (2023). “What Issues Are Data Scientists Talking About? Identification of Current Data Science Issues Using Semantic Content Analysis of Q&A Communities”. PeerJ Computer Science, 9, e1361. https://doi.org/10.7717/peerj-cs.1361

Sağlık Bilgi Yönetiminde Kariyer İçin Gerekli Uzmanlık Rollerinin ve Beceri Setlerinin Tespit Edilmesi

Yıl 2023, Cilt: 12 Sayı: 2, 377 - 385, 18.06.2023
https://doi.org/10.37989/gumussagbil.1284009

Öz

Bu çalışma, sağlık hizmetlerinin kalitesinin ve etkinliğinin sürdürülmesinde ve arttırılmasında hayati bir rol oynayan sağlık bilgi yönetimi (SBY) için iş piyasasında talep edilen yetkinlik alanlarını ve beceri setlerini araştırmayı amaçlamaktadır. Bu amaç doğrultusunda, çevrimiçi SBY iş ilanları üzerinde, metin madenciliği ve olasılıksal konu modellemeye dayalı nicel bir yöntembilim kullanılarak, uzmanlık rollerini ve beceri setlerini anlamsal konular olarak belirlemek için anlamsal bir içerik analizi gerçekleştirilmiştir. Bulgularımız, SBY mesleklerinin yetkinlik gereksinimlerinin geniş bir yelpazesini temsil eden on uzmanlık rolü ve yirmi dört beceriyi ortaya koydu. “Uzman” (%17,57), “Direktör” (%17,05), “Menajer” (%13,18), “Kodlayıcı” (%12,40) ve “Teknisyen” (%11,11) SBY için ilk beş uzmanlık rolü olarak tespit edilmiştir. Konu modelleme analizi kullanılarak 24 konunun ortaya çıkardığı bilgi ve becerilere dayanarak SBY alanı için bir yetkinlik taksonomisi geliştirilmiştir. SBY yetkinlikleri “Sağlık Bilgisi” (%39,92), “Yönetim Becerileri” (%29,80), “Bilişim Becerileri” (%16,09) ve “Sosyal Beceriler” (%14,18) olarak kategorize edildi. Bulgularımız, SBY adayları ve uzmanları, sağlık kuruluşları ve akademik kurumların SBY yetkinliklerini ve becerilerini anlama, değerlendirme ve geliştirme çabaları için önemli faydalar sağlayabilir.

Kaynakça

  • 1. Fenton, S.H, Low, S, Abrams, K.J. and Butler-Henderson, K. (2017). “Health Information Management: Changing with Time”. In Yearbook of Medical Informatics 26 (1), 72–77. https://doi.org/10.15265/IY-2017-021
  • 2. Beesley, K, McLeod, A, Hewitt, B. and Moczygemba, J. (2021). “Health Information Management Reimagined: Assessing Current Professional Skills and Industry Demand”. Perspectives in Health Information Management, 18 (Winter).
  • 3. Berg, M. (2004). “Health Information Management: Integrating Information Technology in Health Care Work”. Psychology Press.
  • 4. Ehrenstein, V, Kharrazi, H, Lehmann, H. and Taylor, C.O. (2019). “Obtaining Data from Electronic Health Records”. Tools and Technologies for Registry Interoperability, Registries for Evaluating Patient Outcomes: A User’s Guide, 1–92.
  • 5. Gurcan, F, Boztas, G.D, Dalveren, G.G.M. and Derawi, M. (2023). “Digital Transformation Strategies, Practices, and Trends: A Large-Scale Retrospective Study Based on Machine Learning”. Sustainability, 15 (9), 7496. https://doi.org/10.3390/su15097496
  • 6. Wager, K.A, Lee, F.W. and Glaser, J.P. (2021). “Health Care Information Systems: A Practical Approach for Health Care Management”. John Wiley and Sons.
  • 7. Blei, D.M. (2012). “Probabilistic Topic Models”. Communications of the ACM, 55 (4), 77–84.
  • 8. Ozyurt, O, Gurcan, F, Dalveren, G.G.M. and Derawi, M. (2022). “Career in Cloud Computing: Exploratory Analysis of In-Demand Competency Areas and Skill Sets”. Applied Sciences, 12 (19), 9787.
  • 9. Indeed. (2023). Job Search | Indeed. https://www.indeed.com/
  • 10. Gurcan, F, Dalveren, G.G.M, Cagiltay, N. E. and Soylu, A. (2022). “Detecting Latent Topics and Trends in Software Engineering Research Since 1980 Using Probabilistic Topic Modeling”. IEEE Access, 10, 74638–74654. https://doi.org/10.1109/ACCESS.2022.3190632
  • 11. Gurcan, F. and Cagiltay, N.E. (2022). “Exploratory Analysis of Topic Interests and Their Evolution in Bioinformatics Research Using Semantic Text Mining and Probabilistic Topic Modeling”. IEEE Access, 10, 31480–31493. https://doi.org/10.1109/ACCESS.2022.3160795
  • 12. Srivastava, A.N. and Sahami, M. (2009). “Text Mining: Classification, Clustering, and Applications”. CRC Press.
  • 13. Karl, A, Wisnowski, J. and Rushing, W.H. (2015). “A Practical Guide to Text Mining with Topic Extraction”. Wiley Interdisciplinary Reviews: Computational Statistics, 7 (5), 326–340.
  • 14. Gurcan, F, Dalveren, G.G.M, Cagiltay, N.E, Roman, D. and Soylu, A. (2022). “Evolution of Software Testing Strategies and Trends: Semantic Content Analysis of Software Research Corpus of the Last 40 Years”. IEEE Access, 10, 106093–106109. https://doi.org/10.1109/ACCESS.2022.3211949
  • 15. Gurcan, F. (2019). “Extraction of Core Competencies for Big Data: Implications for Competency-Based Engineering Education”. International Journal of Engineering Education, 35 (4), 1110–1115.
  • 16. Blei, D.M, Ng, A.Y. and Jordan, M.I. (2003). “Latent Dirichlet Allocation”. Journal of Machine Learning Research, 3 (4/5), 993–1022.
  • 17. Gurcan, F, Cagiltay, N.E. and Cagiltay, K. (2021). “Mapping Human–Computer Interaction Research Themes and Trends from Its Existence to Today: A Topic Modeling-Based Review of past 60 Years”. International Journal of Human-Computer Interaction, 37 (3), 267–280. https://doi.org/10.1080/10447318.2020.1819668
  • 18. Blei, D.M. and Lafferty, J.D. (2007). “Correction: A Correlated Topic Model of Science”. The Annals of Applied Statistics, 1 (2), 634–634. https://doi.org/10.1214/07-aoas136
  • 19. Vayansky, I. and Kumar, S.A.P. (2020). “A Review of Topic Modeling Methods”. Information Systems, 94. https://doi.org/10.1016/j.is.2020.101582
  • 20. Řehůřek, R. and Sojka, P. (2011). “Gensim—Statistical Semantics in Python”. In Lecture Notes in Computer Science.
  • 21. Röder, M, Both, A. and Hinneburg, A. (2015). “Exploring The Space of Topic Coherence Measures”. WSDM 2015 - Proceedings of the 8th ACM International Conference on Web Search and Data Mining. https://doi.org/10.1145/2684822.2685324
  • 22. Mimno, D, Wallach, H. M, Talley, E, Leenders, M. and McCallum, A. (2011). “Optimizing Semantic Coherence in Topic Models”. EMNLP 2011 - Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference.
  • 23. Gurcan, F. and Ozyurt, O. (2020). “Emerging Trends and Knowledge Domains in E-Learning Researches: Topic Modeling Analysis with the Article Published between 2008-2018”. Journal of Computer and Education Research, 8 (16), 738–756. https://doi.org/10.18009/jcer.769349
  • 24. Bates, M, Black, C, Blair, F, Davis, L, Ingram, S, Lane, D. Q, McElderry, A, Peagler, B, Pickett, J, Plettenberg, C. and Hart-Hester, S. (2014). “Perceptions of Health Information Management Educational and Practice Experiences”. Perspectives in Health Information Management / AHIMA, American Health Information Management Association, 11.
  • 25. Gurcan, F. (2023). “What Issues Are Data Scientists Talking About? Identification of Current Data Science Issues Using Semantic Content Analysis of Q&A Communities”. PeerJ Computer Science, 9, e1361. https://doi.org/10.7717/peerj-cs.1361
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Fatih Gürcan 0000-0001-9915-6686

Yayımlanma Tarihi 18 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Gürcan, F. (2023). Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 12(2), 377-385. https://doi.org/10.37989/gumussagbil.1284009
AMA Gürcan F. Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management. Gümüşhane Sağlık Bilimleri Dergisi. Haziran 2023;12(2):377-385. doi:10.37989/gumussagbil.1284009
Chicago Gürcan, Fatih. “Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12, sy. 2 (Haziran 2023): 377-85. https://doi.org/10.37989/gumussagbil.1284009.
EndNote Gürcan F (01 Haziran 2023) Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12 2 377–385.
IEEE F. Gürcan, “Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management”, Gümüşhane Sağlık Bilimleri Dergisi, c. 12, sy. 2, ss. 377–385, 2023, doi: 10.37989/gumussagbil.1284009.
ISNAD Gürcan, Fatih. “Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 12/2 (Haziran 2023), 377-385. https://doi.org/10.37989/gumussagbil.1284009.
JAMA Gürcan F. Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management. Gümüşhane Sağlık Bilimleri Dergisi. 2023;12:377–385.
MLA Gürcan, Fatih. “Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, c. 12, sy. 2, 2023, ss. 377-85, doi:10.37989/gumussagbil.1284009.
Vancouver Gürcan F. Identification of Expertise Roles and Skill Sets Required for Careers in Health Information Management. Gümüşhane Sağlık Bilimleri Dergisi. 2023;12(2):377-85.