Araştırma Makalesi
BibTex RIS Kaynak Göster

Akut İskemik İnmede Platelet Kütlesi İndeksinin 30 Günlük Mortaliteyi Tahmin Etme Gücü

Yıl 2025, Cilt: 14 Sayı: 1, 25 - 31, 23.03.2025

Öz

Akut iskemik inme (Aİİ), dünya çapında morbidite ve mortalitenin önde gelen nedenlerinden biri olup, erken mortalite risk tahmini tedavi kararlarını yönlendirmek için önemlidir. Platelet Mass İndeksi (PMİ), platelet sayısı ve mean platelet volume (MPV) kullanılarak hesaplanan bileşik bir ölçüdür ve kardiyovasküler hastalıklar gibi durumlarda biyomarker olarak umut verici sonuçlar göstermiştir. Bu çalışma, Aİİ hastalarında PMİ’nin 30 günlük mortaliteyi öngörücü değerini değerlendirmeyi amaçlamıştır. Bu retrospektif kohort çalışmasına, 1 Ocak 2019 ile 1 Ocak 2024 tarihleri arasında bir üçüncü basamak hastanenin acil servisine başvuran Aİİ tanısı almış hastalar dahil edilmiştir. Birincil sonlanım noktası 30 günlük mortalite olarak belirlendi. Mortalitenin tahmin edilmesinde optimal PMİ kesiş noktasını belirlemek için duyarlılık, özgüllük ve olasılık oranları hesaplanmış ve genel tanısal doğruluğun ölçülmesi için eğri altındaki alan hesaplanmıştır. Toplamda 117 Aİİ hastası analiz edilmiştir, ortalama yaş 68,2±14,6 yıl olup, hastaların %58,1’i kadındı. 30 günlük mortalite oranı %27,4 olup, ölen hastalar hayatta kalanlardan belirgin şekilde yüksek yaştaydı. Ölen hastalarda PKİ değerleri anlamlı şekilde düşüktü ve EAA 0,775 olarak bulunmuştur. Optimal PMİ kesiş noktası, %71,8 duyarlılık ve %75 özgüllük sağlamakta olup, yüksek değerlerin daha düşük sağkalımla ilişkilendirildiği görülmüştür. PMİ, Aİİ hastalarında 30 günlük mortaliteyi öngörebilecek değerli bir prognostik araç olabilir. Bu bulgular, PKİ’nin erken risk sınıflandırmasındaki potansiyel faydasını desteklemekte olup, farklı klinik ortamlarda kullanımının doğrulanması için ileriye dönük çalışmalar gerekmektedir.

Kaynakça

  • 1. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5:70. https://doi.org/10.1038/s41572-019-0118-8
  • 2. Sakal C, Ak R, Taşçı A, Kırkpantur ED, Ünal Akoğlu E, Cimilli Ozturk T. Admission blood lactate levels of patients diagnosed with cerebrovascular disease effects on short- and long-term mortality risk. Int J Clin Pract. 2021;75(8):e14161. https://doi.org/10.1111/ijcp.14161
  • 3. Loh HC, Lim R, Lee KW, Ooi CY, Chuan DR, Looi I, et al. Effects of vitamin E on stroke: a systematic review with meta-analysis and trial sequential analysis. Stroke Vasc Neurol. 2021;6:109–120. https://doi.org/10.1136/svn-2020-000519
  • 4. Yang Y, Huang X, Wang Y, et al. The impact of triglyceride-glucose index on ischemic stroke: a systematic review and meta-analysis. Cardiovasc Diabetol. 2023;22(1):2. https://doi.org/10.1186/s12933-022-01732-0
  • 5. Rujirachun P, Wattanachayakul P, Phichitnitikorn P, Charoenngam N, Kewcharoen J, Winijkul A. Association of premature ventricular complexes and risk of ischemic stroke: a systematic review and meta-analysis. Clin Cardiol. 2021;44:151–159. https://doi.org/10.1002/clc.23531
  • 6. Liu Z, Perry LA, Morgan V. The association between platelet indices and presence and severity of psoriasis: a systematic review and meta-analysis. Clin Exp Med. 2023;23(2):333-346. https://doi.org/10.1007/s10238-022-00820-5
  • 7. Ji S, Ning X, Zhang B, Shi H, Liu Z, Zhang J. Platelet distribution width, platelet count, and plateletcrit in diabetic retinopathy: A systematic review and meta-analysis of PRISMA guidelines. Medicine (Baltimore). 2019;98(29):e16510. https://doi.org/10.1097/MD.0000000000016510
  • 8. Ding R, Zhang Q, Duan Y, Wang D, Sun Q, Shan R. The relationship between platelet indices and patent ductus arteriosus in preterm infants: a systematic review and meta-analysis. Eur J Pediatr. 2021;180(3):699-708. https://doi.org/10.1007/s00431-020-03802-5
  • 9. Mayda-Domaç F, Misirli H, Yilmaz M. Prognostic role of mean platelet volume and platelet count in ischemic and hemorrhagic stroke. J Stroke Cerebrovasc Dis. 2010;19(1):66-72. https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.03.003
  • 10. Budak YU, Polat M, Huysal K. The use of platelet indices, plateletcrit, mean platelet volume and platelet distribution width in emergency non-traumatic abdominal surgery: a systematic review. Biochem Med (Zagreb). 2016;26(2):178-193. https://doi.org/10.11613/BM.2016.020
  • 11. Chandrashekar V. Plateletcrit as a Screening Tool for Detection of Platelet Quantitative Disorders. J Hematol. 2013;2(1):22-26. https://doi.org/10.4021/jh70w
  • 12. Bantis LE, Nakas CT, Reiser B. Construction of confidence regions in the ROC space after the estimation of the optimal Youden index-based cut-off point. Biometrics. 2014;70(1):212-223. https://doi.org/10.1111/biom.12107
  • 13. Zhao Y, Hua X, Ren X, et al. Increasing burden of stroke in China: A systematic review and meta-analysis of prevalence, incidence, mortality, and case fatality. Int J Stroke. 2023;18(3):259-267. doi: 10.1177/17474930221135983 14. Ustaalioğlu İ, Umaç GA. The role of the prognostic nutritional index in predicting mortality in stroke patients. Rev Assoc Med Bras (1992). 2024;70(9):e20240714. https://doi.org/10.1590/1806-9282.20240714
  • 15. Zhou K, Yu S, Li J, et al. High on-treatment platelet reactivity is associated with poor outcomes after ischemic stroke: A meta-analysis. Acta Neurol Scand. 2022;146(3):205-224. https://doi.org/10.1111/ane.13655
  • 16. Sadeghi F, Kovács S, Zsóri KS, Csiki Z, Bereczky Z, Shemirani AH. Platelet count and mean volume in acute stroke: a systematic review and meta-analysis. Platelets. 2020;31(6):731-739. https://doi.org/10.1080/09537104.2019.1680826
  • 17. Mohamed AB, Elnady HM, Alhewaig HK, Moslem Hefny H, Khodery A. The mean platelet volume and plateletcrit as predictors of short-term outcome of acute ischemic stroke. Egypt J Neurol Psychiatr Neurosurg. 2019;55(1):4. https://doi.org/10.1186/s41983-018-0035-x
  • 18. Dağar S, Emektar E, Korucu O, Uzunosmanoğlu H, Çorbacıoğlu ŞK, Çevik Y. Platelet mass index as a predictor of prognosis in hemorrhagic stroke. Anatolian J Emerg Med. 2024;7(1):21-26. https://doi.org/10.54996/anatolianjem.1316096

Predictive potential of platelet mass index for 30-day mortality in acute ischemic stroke

Yıl 2025, Cilt: 14 Sayı: 1, 25 - 31, 23.03.2025

Öz

Acute ischemic stroke (AIS) is a leading cause of morbidity and mortality worldwide, with early mortality risk prediction essential for guiding treatment decisions. Platelet Mass Index (PMI), a composite measure derived from platelet count and mean platelet volume (MPV), has shown promise as a biomarker in cardiovascular conditions. This study aimed to assess the predictive value of PMI for 30-day mortality in AIS patients. This retrospective cohort study included patients diagnosed with AIS who presented to the emergency department of a tertiary hospital between January 1, 2019, and January 1, 2024. The primary outcome was 30-day mortality. To determine the optimal PMI cutoff for predicting mortality, we calculated sensitivity, specificity, and likelihood ratios and the area under the curve (AUC) was obtained for overall diagnostic accuracy. A total of 117 AIS patients were analyzed, with a mean age of 68,2±14,6 years, and 58,1% were female. The 30-day mortality rate was 27,4%, with deceased patients being significantly older than survivors. PMI values were notably lower in deceased patients, and the ROC analysis yielded an AUC of 0,775. The optimal PMI cutoff provided a sensitivity of 71,8% and a specificity of 75%, with higher values associated with decreased survival. PMI may serve as a valuable prognostic tool for predicting 30-day mortality in AIS patients. These findings support the potential utility of PMI in early risk stratification, though further prospective studies are needed to validate its use in diverse clinical settings.

Kaynakça

  • 1. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5:70. https://doi.org/10.1038/s41572-019-0118-8
  • 2. Sakal C, Ak R, Taşçı A, Kırkpantur ED, Ünal Akoğlu E, Cimilli Ozturk T. Admission blood lactate levels of patients diagnosed with cerebrovascular disease effects on short- and long-term mortality risk. Int J Clin Pract. 2021;75(8):e14161. https://doi.org/10.1111/ijcp.14161
  • 3. Loh HC, Lim R, Lee KW, Ooi CY, Chuan DR, Looi I, et al. Effects of vitamin E on stroke: a systematic review with meta-analysis and trial sequential analysis. Stroke Vasc Neurol. 2021;6:109–120. https://doi.org/10.1136/svn-2020-000519
  • 4. Yang Y, Huang X, Wang Y, et al. The impact of triglyceride-glucose index on ischemic stroke: a systematic review and meta-analysis. Cardiovasc Diabetol. 2023;22(1):2. https://doi.org/10.1186/s12933-022-01732-0
  • 5. Rujirachun P, Wattanachayakul P, Phichitnitikorn P, Charoenngam N, Kewcharoen J, Winijkul A. Association of premature ventricular complexes and risk of ischemic stroke: a systematic review and meta-analysis. Clin Cardiol. 2021;44:151–159. https://doi.org/10.1002/clc.23531
  • 6. Liu Z, Perry LA, Morgan V. The association between platelet indices and presence and severity of psoriasis: a systematic review and meta-analysis. Clin Exp Med. 2023;23(2):333-346. https://doi.org/10.1007/s10238-022-00820-5
  • 7. Ji S, Ning X, Zhang B, Shi H, Liu Z, Zhang J. Platelet distribution width, platelet count, and plateletcrit in diabetic retinopathy: A systematic review and meta-analysis of PRISMA guidelines. Medicine (Baltimore). 2019;98(29):e16510. https://doi.org/10.1097/MD.0000000000016510
  • 8. Ding R, Zhang Q, Duan Y, Wang D, Sun Q, Shan R. The relationship between platelet indices and patent ductus arteriosus in preterm infants: a systematic review and meta-analysis. Eur J Pediatr. 2021;180(3):699-708. https://doi.org/10.1007/s00431-020-03802-5
  • 9. Mayda-Domaç F, Misirli H, Yilmaz M. Prognostic role of mean platelet volume and platelet count in ischemic and hemorrhagic stroke. J Stroke Cerebrovasc Dis. 2010;19(1):66-72. https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.03.003
  • 10. Budak YU, Polat M, Huysal K. The use of platelet indices, plateletcrit, mean platelet volume and platelet distribution width in emergency non-traumatic abdominal surgery: a systematic review. Biochem Med (Zagreb). 2016;26(2):178-193. https://doi.org/10.11613/BM.2016.020
  • 11. Chandrashekar V. Plateletcrit as a Screening Tool for Detection of Platelet Quantitative Disorders. J Hematol. 2013;2(1):22-26. https://doi.org/10.4021/jh70w
  • 12. Bantis LE, Nakas CT, Reiser B. Construction of confidence regions in the ROC space after the estimation of the optimal Youden index-based cut-off point. Biometrics. 2014;70(1):212-223. https://doi.org/10.1111/biom.12107
  • 13. Zhao Y, Hua X, Ren X, et al. Increasing burden of stroke in China: A systematic review and meta-analysis of prevalence, incidence, mortality, and case fatality. Int J Stroke. 2023;18(3):259-267. doi: 10.1177/17474930221135983 14. Ustaalioğlu İ, Umaç GA. The role of the prognostic nutritional index in predicting mortality in stroke patients. Rev Assoc Med Bras (1992). 2024;70(9):e20240714. https://doi.org/10.1590/1806-9282.20240714
  • 15. Zhou K, Yu S, Li J, et al. High on-treatment platelet reactivity is associated with poor outcomes after ischemic stroke: A meta-analysis. Acta Neurol Scand. 2022;146(3):205-224. https://doi.org/10.1111/ane.13655
  • 16. Sadeghi F, Kovács S, Zsóri KS, Csiki Z, Bereczky Z, Shemirani AH. Platelet count and mean volume in acute stroke: a systematic review and meta-analysis. Platelets. 2020;31(6):731-739. https://doi.org/10.1080/09537104.2019.1680826
  • 17. Mohamed AB, Elnady HM, Alhewaig HK, Moslem Hefny H, Khodery A. The mean platelet volume and plateletcrit as predictors of short-term outcome of acute ischemic stroke. Egypt J Neurol Psychiatr Neurosurg. 2019;55(1):4. https://doi.org/10.1186/s41983-018-0035-x
  • 18. Dağar S, Emektar E, Korucu O, Uzunosmanoğlu H, Çorbacıoğlu ŞK, Çevik Y. Platelet mass index as a predictor of prognosis in hemorrhagic stroke. Anatolian J Emerg Med. 2024;7(1):21-26. https://doi.org/10.54996/anatolianjem.1316096
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Acil Tıp
Bölüm Araştırma Makaleleri
Yazarlar

İzzet Ustaalioğlu 0000-0001-9703-8344

Nurhayat Başkaya Bu kişi benim 0000-0002-2868-1309

Yayımlanma Tarihi 23 Mart 2025
Gönderilme Tarihi 28 Aralık 2024
Kabul Tarihi 11 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Ustaalioğlu, İ., & Başkaya, N. (2025). Predictive potential of platelet mass index for 30-day mortality in acute ischemic stroke. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, 14(1), 25-31.
AMA Ustaalioğlu İ, Başkaya N. Predictive potential of platelet mass index for 30-day mortality in acute ischemic stroke. Gümüşhane Sağlık Bilimleri Dergisi. Mart 2025;14(1):25-31.
Chicago Ustaalioğlu, İzzet, ve Nurhayat Başkaya. “Predictive Potential of Platelet Mass Index for 30-Day Mortality in Acute Ischemic Stroke”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 14, sy. 1 (Mart 2025): 25-31.
EndNote Ustaalioğlu İ, Başkaya N (01 Mart 2025) Predictive potential of platelet mass index for 30-day mortality in acute ischemic stroke. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 14 1 25–31.
IEEE İ. Ustaalioğlu ve N. Başkaya, “Predictive potential of platelet mass index for 30-day mortality in acute ischemic stroke”, Gümüşhane Sağlık Bilimleri Dergisi, c. 14, sy. 1, ss. 25–31, 2025.
ISNAD Ustaalioğlu, İzzet - Başkaya, Nurhayat. “Predictive Potential of Platelet Mass Index for 30-Day Mortality in Acute Ischemic Stroke”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi 14/1 (Mart 2025), 25-31.
JAMA Ustaalioğlu İ, Başkaya N. Predictive potential of platelet mass index for 30-day mortality in acute ischemic stroke. Gümüşhane Sağlık Bilimleri Dergisi. 2025;14:25–31.
MLA Ustaalioğlu, İzzet ve Nurhayat Başkaya. “Predictive Potential of Platelet Mass Index for 30-Day Mortality in Acute Ischemic Stroke”. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi, c. 14, sy. 1, 2025, ss. 25-31.
Vancouver Ustaalioğlu İ, Başkaya N. Predictive potential of platelet mass index for 30-day mortality in acute ischemic stroke. Gümüşhane Sağlık Bilimleri Dergisi. 2025;14(1):25-31.