Araştırma Makalesi
BibTex RIS Kaynak Göster

VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ

Yıl 2024, , 385 - 396, 26.09.2024
https://doi.org/10.61859/hacettepesid.1385302

Öz

Araştırmanın amacı veri zarflama analizi ile yataklı servisi olan hastane birimlerinin verimliliğinin ölçülmesidir. Bu kapsamda bir eğitim ve araştırma hastanesinde yataklı servislerin verimlilik düzeylerini ölçmek için; yataklı servislerde görevli uzmanlığını almış doktor sayısı, servisteki yatak sayısı, servisin toplam gideri, servisteki araştırma görevlisi doktor sayısı, serviste hastaların ortalama yattığı gün sayısı, öğretim üyelerinin toplam ders saati ve serviste çalışan yardımcı personel sayısı girdi olarak, servislerin gelirleri, servisteki akademisyenlerin yayın sayısı ve servisin tedavi ettiği hasta sayısı çıktı olarak veri zarflama analizi ile incelenmiştir. Araştırmanın evrenini yataklı servis ile hizmet veren tüm hastane birimleri oluşturmaktadır. Araştırma örneklemi olarak bir eğitim ve araştırma hastanesindeki yataklı hizmet veren birimler seçilmiştir. Analiz neticesinde beyin sinir cerrahisi, kadın hastalıkları ve doğum, kalp ve damar cerrahisi, ortopedi ve travmatoloji ve üroloji servisleri en verimli servisler olarak belirlenmiştir.

Etik Beyan

Çalışma etik ilkeler çerçevesinde hazırlanmıştır.

Kaynakça

  • Ayanoğlu, Y., Atan, M. & Beylik, M. (2010). Hastanelerde veri zarflama analizi yöntemiyle finansal performans ölçümü ve değerlendirilmesi. Sağlıkta Performans ve Kalite Dergisi, 2(2), 40-62.
  • Banker, R. D., Charnes, A., Cooper, W. W., Swarts, J., & Thomas, D. (1989). An introduction to data envelopment analysis with some of its models and their uses. Research In Governmental And Nonprofit Accounting, 5(1), 125-163.
  • Burgess, R., Lewis, M., & Hill, J. (2022). Benchmarking community/primary care musculoskeletal services: a narrative review and recommendation. Musculoskeletal Care, 21(1), 148-158.
  • Charnes, A., Cooper, W., Lewin, A. Y., & Seiford, L. M. (1997). Data envelopment analysis theory, methodology and applications. Journal of the Operational Research Society, 48(3), 332-333.
  • Coelli, T. J. (1995). Recent developments in frontier modelling and efficiency measurement. Australian Journal Of Agricultural Economics, 39(3), 219-245.
  • Çalışkan, H. (2020). Kamu hastane birliklerinin verimlilik düzeylerinin veri zarflama analizi ile değerlendirilmesi. Verimlilik Dergisi, (2), 157-178.
  • Çınaroğlu, S. (2018). Eğitim ve araştırma hastanesi olan ve olmayan hastanelerin teknik verimliliklerinin veri zarflama analizi ile karşılaştırılması. Hacettepe Sağlık İdaresi Dergisi, 21(2), 179-198.
  • Gajewski, B., Lee, R., & Dunton, N. (2012). Data envelopment analysis in the presence of measurement error: case study from the national database of nursing quality indicators. Journal of Applied Statistics, 39(12), 2639-2653.
  • Gavurova, B., Kocisova, K., & Sopko, J. (2021). Health system efficiency in OECD countries: dynamic network DEA approach. Health Economics Review, 11(1), 1-25.
  • Goldfield, N., Pine, M., & Pine, J. (1992). Measuring and managing health care quality: procedures, techniques, and protocols. The Journal for Healthcare Quality (JHQ), 14(4), 61.
  • Gong, G., Chen, Y., Gao, H., Su, D., & Chang, J. (2019). Has the efficiency of china’s healthcare system improved after healthcare reform? a network data envelopment analysis and tobit regression approach. International Journal of Environmental Research and Public Health, 16(23), 4847.
  • Grosskopf, S. (1993). Efficiency and productivity. In O.Fried, Harold, Lovell, and Schmidt (Eds.), The measurement of productive efficiency: Techniques and applications, (2nd ed., pp. 160-194). Oxford Academic.
  • Gu, X. & Itoh, K. (2016). Performance indicators: healthcare professionals’ views. International Journal of Health Care Quality Assurance, 29(7), 801-815.
  • Güler, M., Doğan, Ö. İ. & Erdem, S. (2017). Sağlık kuruluşlarının performansının veri zarflama analizi ile incelenmesi ve bir uygulama. Verimlilik Dergisi, (4), 169-185.
  • Gülsevin, G., & Türkan, A. H. (2012). Afyonkarahisar hastanelerinin etkinliklerinin veri zarflama analizi ile değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 12(2), 1-8.
  • Harrison, J. P., Ogniewski, R., & Hoelscher, S. (2009). The improving efficiency of critical Access hospitals. The Health Care Manager, 28(3), 209-217.
  • Hollingsworth, B. (2008). The measurement of efficiency and productivity of health care delivery. Health Economics, 17(10), 1107-1128.
  • Hollingsworth, B., & Peacock, S. (2006). Efficiency measurement in health and health care. Routledge.
  • Hollnagel, E. (2014). Efficiency and Safety: Beyond the Old Trade-Offs. CRC Press
  • Iyengar, R. & Özcan, Y. A. (2009). Performance evaluation of ambulatory surgery centres: an efficiency approach. Health Services Management Research, 22(4), 184-190.
  • Jacobs, R., & Smith, P. C. (2005). Street-level bureaucracy and public management: The case of the NHS. Public Money and Management, 25(1), 53-60.
  • Jacobs, R., Smith, P. C., & Street, A. (2006). Measuring efficiency in health care: Analytic techniques and health policy. Cambridge University Press
  • Jakovljevic, M. B., Vukovic, M., & Fontanesi, J. (2016). Life expectancy and health expenditure evolution in Eastern Europe—DİD and DEA analysis. Expert Review of Pharmacoeconomics & Outcomes Research, 16(4), 537-546.
  • Kaplan, R. S., & Porter, M. E. (2011). How to solve the cost crisis in health care. Harvard Business Review, 89(9), 46-52.
  • Khammissa, R., Nemutandani, S., Shangase, S., Feller, G., Lemmer, J., & Feller, L. (2022). The burnout construct with reference to healthcare providers: a narrative review. Sage Open Medicine, 10, 205031212210830.
  • Lenard, M. L. & Shimshak, D. G. (2009). Benchmarking nursing home performance at the state level. Health Services Management Research, 22(2), 51-61.
  • Marcikić, A., Pejanović, R., Sedlak, O., Radovanov, B., & Ćirić, Z. (2016). Quantitative analysis of the demand for healthcare services. Management - Journal for Theory and Practice of Management, 21(80), 55-65.
  • Moshiri, H., Aljunid, S. M., & Amin, R. M. (2010). Hospital efficiency: A review of the concept, measurement techniques, and hospital efficiency studies. Malaysian Journal of Public Health Medicine, 10 (2), 35-43.
  • Mut, S., Kutlu, G. & Turgut, M. (2019). Türkiye’de sağlık alanında veri zarflama analizi yöntemi kullanılarak yapılan makalelerin incelenmesi. Hacettepe Sağlık İdaresi Dergisi, 22(1), 207-244.
  • Özcan, Y. A. (2008). Health care benchmarking and performance evaluation. Springer US.
  • Pakyz, A. & Ozcan, Y. A. (2013). Use of data envelopment analysis to quantify opportunities for antibacterial targets for reduction of health care–associatedclostridium difficileinfection. American Journal of Medical Quality, 29(5), 437-444.
  • Radnor, Z., & Holweg, M. (2012). Lean in healthcare: The unfilled promise? Social Science & Medicine, 74(3), 364-371.
  • Renner, A., Kirigia, J. M., Zere, E. A., Barry, S. P., Kirigia, D. G., Kamara, C., & Muthuri, L. H. (2005). Technical efficiency of peripheral health units in Pujehun district of Sierra Leone: a DEA application. BMC Health Services Research, 5, 1-11.
  • Rosko, M. D. (2001). Impact of hmo penetration and other environmental factors on hospital x-inefficiency. Medical Care Research and Review, 58(4), 430-454.
  • Rothbard, M. N. (1979). The myth of efficiency. Reprinted from Time, In Mario Rizzo (Eds.) Uncertainty, and Disequilibrium, (pp. 90 – 95). Lexington, Mass: DC Health
  • Salinas-Jiménez, J., & Smith, P. (1996). Data envelopment analysis applied to quality in primary health care. Annals of Operations Research, 67(1), 141-161.
  • Sezen, B. & Gök, M., Ş. (2009). Veri zarflama analizi yöntemi ile hastane verimliliklerinin incelenmesi. ODTÜ Gelişme Dergisi, 36(2), 383 – 403
  • Shahhoseini, R., Tofighi, S., Jaafaripooyan, E., & SafiAryan, R. (2011). Efficiency measurement in developing countries: application of data envelopment analysis for iranian hospitals. Health Services Management Research, 24(2), 75-80.
  • Shay, P. D. & Özcan, Y. A. (2012). Freestanding inpatient rehabilitation facility performance following the 60 percent rule. Medical Care Research and Review, 70(1), 46-67.
  • Si, S., You, X., Liu, H., & Huang, J. (2017). Identifying key performance indicators for holistic hospital management with a modified dematel approach. International Journal of Environmental Research and Public Health, 14(8), 934.
  • Smith, P. C., & York, N. (2004). Quality, benchmarking and the role of the clinical director in the NHS. Health Services Management Research, 17(2), 103-116.
  • Sorra, J., Zebrak, K., Yount, N., Famolaro, T., Gri, L., Franklin, M. G., Smith, S. A. & Streagle, S. (2021). Development and pilot testing of survey items to assess the culture of value and efficiency in hospitals and medical offices. BMJ Quality & Amp; Safety, 31(7), 493-502.
  • Şenol, O., Metin, A., & Korucu, K. S. (2019). Ülkelerin ölüm göstergeleriyle karşılaştırılması: veri zarflama analizi. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (33), 82-103.
  • Whittaker, W., & Malamateniou, C. (2017). Evaluating the impact of integrated care: a longitudinal study in Northern Ireland. Journal of Integrated Care, 25(3), 159-171.
  • Yang, C. C. (2017). Measuring health indicators and allocating health resources: a DEA-based approach. Health Care Management Science, 20, 365-378.
  • Yeşilaydın, G. (2018). Veri zarflama analizi ile Türkiye’de sağlık etkinliğinin ölçülmesi: Sistematik bir analiz. Ankara Sağlık Bilimleri Dergisi, 6(1), 49-70.
  • Yiğit, A., Yiğit, V., & Eroymak, S. (2019). Veri zarflama analizi ile ülkelerin medikal turizm etkinliğinin ölçülmesi. OPUS International Journal of Society Researches, 12, 917-936.
  • Yiğit, V., & Esen, H. (2017). Pabon Lasso modeli ve veri zarflama analizi ile hastanelerde performans ölçümü. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 8(2), 26-32.
  • Zavras, A. I., Tsakos, G., Economou, C., & Kyriopoulos, J. (2002). Using DEA to evaluate efficiency and formulate policy within a Greek national primary health care network. Journal of Medical Systems, 26, 285-292.

EVALUATION OF HOSPITAL EFFICIENCY WITH DATA ENVELOPMENT ANALYSIS

Yıl 2024, , 385 - 396, 26.09.2024
https://doi.org/10.61859/hacettepesid.1385302

Öz

The aim of the study is to measure the efficiency of hospital units with inpatient wards using data envelopment analysis. In this context, in order to measure the efficiency levels of inpatient wards in a training and research hospital; the number of doctors with specialization in inpatient wards, the number of beds in the ward, the total expenditure of the ward, the number of research assistant doctors in the ward, the average number of inpatient days in the ward, the total number of lecture hours of faculty members and the number of auxiliary staff working in the ward were analyzed as inputs, and the revenues of the wards, the number of publications of academicians in the ward and the number of patients treated by the ward were analyzed as outputs by data envelopment analysis. The population of the study consists of all hospital units serving with inpatient services. Inpatient units in a training and research hospital were selected as the research sample. As a result of the analysis, neurosurgery, gynecology and obstetrics, cardiovascular surgery, orthopedics and traumatology and urology services were determined as the most efficient services.

Kaynakça

  • Ayanoğlu, Y., Atan, M. & Beylik, M. (2010). Hastanelerde veri zarflama analizi yöntemiyle finansal performans ölçümü ve değerlendirilmesi. Sağlıkta Performans ve Kalite Dergisi, 2(2), 40-62.
  • Banker, R. D., Charnes, A., Cooper, W. W., Swarts, J., & Thomas, D. (1989). An introduction to data envelopment analysis with some of its models and their uses. Research In Governmental And Nonprofit Accounting, 5(1), 125-163.
  • Burgess, R., Lewis, M., & Hill, J. (2022). Benchmarking community/primary care musculoskeletal services: a narrative review and recommendation. Musculoskeletal Care, 21(1), 148-158.
  • Charnes, A., Cooper, W., Lewin, A. Y., & Seiford, L. M. (1997). Data envelopment analysis theory, methodology and applications. Journal of the Operational Research Society, 48(3), 332-333.
  • Coelli, T. J. (1995). Recent developments in frontier modelling and efficiency measurement. Australian Journal Of Agricultural Economics, 39(3), 219-245.
  • Çalışkan, H. (2020). Kamu hastane birliklerinin verimlilik düzeylerinin veri zarflama analizi ile değerlendirilmesi. Verimlilik Dergisi, (2), 157-178.
  • Çınaroğlu, S. (2018). Eğitim ve araştırma hastanesi olan ve olmayan hastanelerin teknik verimliliklerinin veri zarflama analizi ile karşılaştırılması. Hacettepe Sağlık İdaresi Dergisi, 21(2), 179-198.
  • Gajewski, B., Lee, R., & Dunton, N. (2012). Data envelopment analysis in the presence of measurement error: case study from the national database of nursing quality indicators. Journal of Applied Statistics, 39(12), 2639-2653.
  • Gavurova, B., Kocisova, K., & Sopko, J. (2021). Health system efficiency in OECD countries: dynamic network DEA approach. Health Economics Review, 11(1), 1-25.
  • Goldfield, N., Pine, M., & Pine, J. (1992). Measuring and managing health care quality: procedures, techniques, and protocols. The Journal for Healthcare Quality (JHQ), 14(4), 61.
  • Gong, G., Chen, Y., Gao, H., Su, D., & Chang, J. (2019). Has the efficiency of china’s healthcare system improved after healthcare reform? a network data envelopment analysis and tobit regression approach. International Journal of Environmental Research and Public Health, 16(23), 4847.
  • Grosskopf, S. (1993). Efficiency and productivity. In O.Fried, Harold, Lovell, and Schmidt (Eds.), The measurement of productive efficiency: Techniques and applications, (2nd ed., pp. 160-194). Oxford Academic.
  • Gu, X. & Itoh, K. (2016). Performance indicators: healthcare professionals’ views. International Journal of Health Care Quality Assurance, 29(7), 801-815.
  • Güler, M., Doğan, Ö. İ. & Erdem, S. (2017). Sağlık kuruluşlarının performansının veri zarflama analizi ile incelenmesi ve bir uygulama. Verimlilik Dergisi, (4), 169-185.
  • Gülsevin, G., & Türkan, A. H. (2012). Afyonkarahisar hastanelerinin etkinliklerinin veri zarflama analizi ile değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 12(2), 1-8.
  • Harrison, J. P., Ogniewski, R., & Hoelscher, S. (2009). The improving efficiency of critical Access hospitals. The Health Care Manager, 28(3), 209-217.
  • Hollingsworth, B. (2008). The measurement of efficiency and productivity of health care delivery. Health Economics, 17(10), 1107-1128.
  • Hollingsworth, B., & Peacock, S. (2006). Efficiency measurement in health and health care. Routledge.
  • Hollnagel, E. (2014). Efficiency and Safety: Beyond the Old Trade-Offs. CRC Press
  • Iyengar, R. & Özcan, Y. A. (2009). Performance evaluation of ambulatory surgery centres: an efficiency approach. Health Services Management Research, 22(4), 184-190.
  • Jacobs, R., & Smith, P. C. (2005). Street-level bureaucracy and public management: The case of the NHS. Public Money and Management, 25(1), 53-60.
  • Jacobs, R., Smith, P. C., & Street, A. (2006). Measuring efficiency in health care: Analytic techniques and health policy. Cambridge University Press
  • Jakovljevic, M. B., Vukovic, M., & Fontanesi, J. (2016). Life expectancy and health expenditure evolution in Eastern Europe—DİD and DEA analysis. Expert Review of Pharmacoeconomics & Outcomes Research, 16(4), 537-546.
  • Kaplan, R. S., & Porter, M. E. (2011). How to solve the cost crisis in health care. Harvard Business Review, 89(9), 46-52.
  • Khammissa, R., Nemutandani, S., Shangase, S., Feller, G., Lemmer, J., & Feller, L. (2022). The burnout construct with reference to healthcare providers: a narrative review. Sage Open Medicine, 10, 205031212210830.
  • Lenard, M. L. & Shimshak, D. G. (2009). Benchmarking nursing home performance at the state level. Health Services Management Research, 22(2), 51-61.
  • Marcikić, A., Pejanović, R., Sedlak, O., Radovanov, B., & Ćirić, Z. (2016). Quantitative analysis of the demand for healthcare services. Management - Journal for Theory and Practice of Management, 21(80), 55-65.
  • Moshiri, H., Aljunid, S. M., & Amin, R. M. (2010). Hospital efficiency: A review of the concept, measurement techniques, and hospital efficiency studies. Malaysian Journal of Public Health Medicine, 10 (2), 35-43.
  • Mut, S., Kutlu, G. & Turgut, M. (2019). Türkiye’de sağlık alanında veri zarflama analizi yöntemi kullanılarak yapılan makalelerin incelenmesi. Hacettepe Sağlık İdaresi Dergisi, 22(1), 207-244.
  • Özcan, Y. A. (2008). Health care benchmarking and performance evaluation. Springer US.
  • Pakyz, A. & Ozcan, Y. A. (2013). Use of data envelopment analysis to quantify opportunities for antibacterial targets for reduction of health care–associatedclostridium difficileinfection. American Journal of Medical Quality, 29(5), 437-444.
  • Radnor, Z., & Holweg, M. (2012). Lean in healthcare: The unfilled promise? Social Science & Medicine, 74(3), 364-371.
  • Renner, A., Kirigia, J. M., Zere, E. A., Barry, S. P., Kirigia, D. G., Kamara, C., & Muthuri, L. H. (2005). Technical efficiency of peripheral health units in Pujehun district of Sierra Leone: a DEA application. BMC Health Services Research, 5, 1-11.
  • Rosko, M. D. (2001). Impact of hmo penetration and other environmental factors on hospital x-inefficiency. Medical Care Research and Review, 58(4), 430-454.
  • Rothbard, M. N. (1979). The myth of efficiency. Reprinted from Time, In Mario Rizzo (Eds.) Uncertainty, and Disequilibrium, (pp. 90 – 95). Lexington, Mass: DC Health
  • Salinas-Jiménez, J., & Smith, P. (1996). Data envelopment analysis applied to quality in primary health care. Annals of Operations Research, 67(1), 141-161.
  • Sezen, B. & Gök, M., Ş. (2009). Veri zarflama analizi yöntemi ile hastane verimliliklerinin incelenmesi. ODTÜ Gelişme Dergisi, 36(2), 383 – 403
  • Shahhoseini, R., Tofighi, S., Jaafaripooyan, E., & SafiAryan, R. (2011). Efficiency measurement in developing countries: application of data envelopment analysis for iranian hospitals. Health Services Management Research, 24(2), 75-80.
  • Shay, P. D. & Özcan, Y. A. (2012). Freestanding inpatient rehabilitation facility performance following the 60 percent rule. Medical Care Research and Review, 70(1), 46-67.
  • Si, S., You, X., Liu, H., & Huang, J. (2017). Identifying key performance indicators for holistic hospital management with a modified dematel approach. International Journal of Environmental Research and Public Health, 14(8), 934.
  • Smith, P. C., & York, N. (2004). Quality, benchmarking and the role of the clinical director in the NHS. Health Services Management Research, 17(2), 103-116.
  • Sorra, J., Zebrak, K., Yount, N., Famolaro, T., Gri, L., Franklin, M. G., Smith, S. A. & Streagle, S. (2021). Development and pilot testing of survey items to assess the culture of value and efficiency in hospitals and medical offices. BMJ Quality & Amp; Safety, 31(7), 493-502.
  • Şenol, O., Metin, A., & Korucu, K. S. (2019). Ülkelerin ölüm göstergeleriyle karşılaştırılması: veri zarflama analizi. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (33), 82-103.
  • Whittaker, W., & Malamateniou, C. (2017). Evaluating the impact of integrated care: a longitudinal study in Northern Ireland. Journal of Integrated Care, 25(3), 159-171.
  • Yang, C. C. (2017). Measuring health indicators and allocating health resources: a DEA-based approach. Health Care Management Science, 20, 365-378.
  • Yeşilaydın, G. (2018). Veri zarflama analizi ile Türkiye’de sağlık etkinliğinin ölçülmesi: Sistematik bir analiz. Ankara Sağlık Bilimleri Dergisi, 6(1), 49-70.
  • Yiğit, A., Yiğit, V., & Eroymak, S. (2019). Veri zarflama analizi ile ülkelerin medikal turizm etkinliğinin ölçülmesi. OPUS International Journal of Society Researches, 12, 917-936.
  • Yiğit, V., & Esen, H. (2017). Pabon Lasso modeli ve veri zarflama analizi ile hastanelerde performans ölçümü. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 8(2), 26-32.
  • Zavras, A. I., Tsakos, G., Economou, C., & Kyriopoulos, J. (2002). Using DEA to evaluate efficiency and formulate policy within a Greek national primary health care network. Journal of Medical Systems, 26, 285-292.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Mürsel Güler 0000-0002-1464-9834

Yayımlanma Tarihi 26 Eylül 2024
Gönderilme Tarihi 2 Kasım 2023
Kabul Tarihi 22 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Güler, M. (2024). VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ. Hacettepe Sağlık İdaresi Dergisi, 27(3), 385-396. https://doi.org/10.61859/hacettepesid.1385302
AMA Güler M. VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ. HSİD. Eylül 2024;27(3):385-396. doi:10.61859/hacettepesid.1385302
Chicago Güler, Mürsel. “VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ”. Hacettepe Sağlık İdaresi Dergisi 27, sy. 3 (Eylül 2024): 385-96. https://doi.org/10.61859/hacettepesid.1385302.
EndNote Güler M (01 Eylül 2024) VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ. Hacettepe Sağlık İdaresi Dergisi 27 3 385–396.
IEEE M. Güler, “VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ”, HSİD, c. 27, sy. 3, ss. 385–396, 2024, doi: 10.61859/hacettepesid.1385302.
ISNAD Güler, Mürsel. “VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ”. Hacettepe Sağlık İdaresi Dergisi 27/3 (Eylül 2024), 385-396. https://doi.org/10.61859/hacettepesid.1385302.
JAMA Güler M. VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ. HSİD. 2024;27:385–396.
MLA Güler, Mürsel. “VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ”. Hacettepe Sağlık İdaresi Dergisi, c. 27, sy. 3, 2024, ss. 385-96, doi:10.61859/hacettepesid.1385302.
Vancouver Güler M. VERİ ZARFLAMA ANALİZİ İLE HASTANE VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ. HSİD. 2024;27(3):385-96.