Araştırma Makalesi
BibTex RIS Kaynak Göster

Relationships between pyridaben resistance ratio and esterase, GST and P450 monooxygenase enzyme in Tetranychus urticae Koch, 1836 (Acari: Tetranychidae)

Yıl 2024, , 201 - 208, 21.06.2024
https://doi.org/10.29050/harranziraat.1416292

Öz

The two-spotted spider mite [Tetranychus urticae Koch, 1836 (Acari: Tetranychidae)] is a pest organism that feeds on various plant species and has become a serious problem in the agricultural sector. Chemical control methods are often preferred in the control against this pest. METI acaricides are among the commonly used chemicals. In the study, the T. urticae (GSS) population was selected 10 fold with pyridaben. In the experiments, LC50 values were determined as 1 control + 7 concentrations, 3 replicates for each concentration and 25 individuals in each replicate. Dead live counts were determined after 24 hours. In addition, esterase, P450 monooxygenase and glutathione S-transferase (GST) enzyme activities were determined in pyridaben-selected T. urticae under
laboratory conditions using a microplate reader. It was found that the resistance rate increased 64.2-fold when the T. urticae (GSS) population was selected 10 folds with pyridaben. The esterase activities were 10.38, 11.45, 17.82 mOD min-1 mg-1 protein; P450 monooxygenase activities were 0.0018, 0.0033 and 0.0068 mOD min-1 mg-1 protein; GST activities were 3.0, 3.1 and 3.5 mOD min-1 mg-1 protein, respectively, in the initial, Selection 5 (S5) and Selection 10 (S10) populations. These results suggest that esterase and monooxygenase enzymes may play a role in the pest's resistance to pyridaben. Regular monitoring of the susceptibility levels of pest organisms and controlling resistance is an important step to maintain productivity and plant health in agricultural production.

Kaynakça

  • Alavijeh, E. S., Khajehali, J., Snoeck, S., Panteleri, R., Ghadamyari, M., Jonckheere, W., Bajda, S., Saalwaechter, C., Geibel, S., Douris, V., Vontas, J., Van Leeuwen, T., & Dermauw, W. (2020). Molecular and genetic analysis of resistance to METI-I acaricides in Iranian populations of the citrus red mite Panonychus citri. Pesticide Biochemistry and Physiology, 164, 73–84.
  • Assouguem, A., Kara, M., Mechchate, H., Korkmaz, Y. B., Benmessaoud, S., Ramzi, A., Abdullah, K. R., Noman, O. M., Farah, A., & Lazraq, A. (2022). Current Situation of Tetranychus urticae (Acari: Tetranychidae) in Northern Africa: The Sustainable Control Methods and Priorities for Future Research. Sustainability, 14(4), Article 4.
  • Badawy, M. E. I., Mahmoud, M. S., & Khattab, M. M. (2022). Toxicity, joint action effect, and enzymatic assays of abamectin, chlorfenapyr, and pyridaben against the two-spotted spider mite Tetranychus urticae. The Journal of Basic and Applied Zoology, 83(1), 22.
  • Bajda, S., Dermauw, W., Panteleri, R., Sugimoto, N., Douris, V., Tirry, L., ... & Van Leeuwen, T. (2017). A mutation in the PSST homologue of complex I (NADH: ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect biochemistry and molecular biology, 80, 79-90.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248–254.
  • Dekeyser, M. A. (2005). Acaricide mode of action. Pest Management Science, 61(2), 103–110.
  • Ding, T.-B., Niu, J.-Z., Yang, L.-H., Zhang, K., Dou, W., & Wang, J.-J. (2013). Transcription profiling of two cytochrome P450 genes potentially involved in acaricide metabolism in citrus red mite Panonychus citri. Pesticide Biochemistry and Physiology, 106(1), 28–37.
  • Feng, K., Ou, S., Zhang, P., Wen, X., Shi, L., Yang, Y., Hu, Y., Zhang, Y., Shen, G., Xu, Z., & He, L. (2020). The cytochrome P450 CYP389C16 contributes to the cross-resistance between cyflumetofen and pyridaben in Tetranychus cinnabarinus (Boisduval). Pest Management Science, 76(2), 665–675.
  • Goka, K. (1998). Mode of inheritance of resistance to three new acaricides in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Experimental & Applied Acarology, 22(12), 699–708.
  • Herron, G. A., & Rophail, J. (1998). Tebufenpyrad (Pyranica®) resistance detected in two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) from apples in Western Australia. Experimental & Applied Acarology, 22(11), 633–641.
  • Hollingworth, R. M., & Ahammadsahib, K. I. (1995). Inhibitors of respiratory complex I. Mechanisms, pesticidal actions and toxicology. Reviews in pesticide toxicology (USA).
  • Hu, J., Wang, C., Wang, J., You, Y., & Chen, F. (2010).Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards. Pest Management Science, 66(9), 1025–1030.
  • Jeppson, L. R., Keifer, H. H., & Baker, E. W. (1975). Mites injurious to economic plants. Univ of California Press.
  • Khalighi, M., Dermauw, W., Wybouw, N., Bajda, S., Osakabe, M., Tirry, L., & Van Leeuwen, T. (2016). Molecular analysis of cyenopyrafen resistance in the two‐spotted spider mite Tetranychus urticae. Pest Management Science, 72(1), 103–112.
  • Kim, Y., Park, H., Cho, J., & Ahn, Y. (2006). Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of economic entomology, 99(3), 954–958.
  • Knowles, C. O. (1997). Mechanisms of Resistance to Acaricides. Içinde V. Sjut (Ed.), Molecular Mechanisms of Resistance to Agrochemicals (ss. 57-77). Springer.
  • Koo, H.-N., Choi, J., Shin, E., Kang, W., Cho, S.-R., Kim, H., Park, B., & Kim, G.-H. (2021). Susceptibility to Acaricides and the Frequencies of Point Mutations in Etoxazole- and Pyridaben-Resistant Strains and Field Populations of the Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae). Insects, 12(7), Article 7.
  • LeOra, S. (1994). Polo-PC: Probit and Logit Analysis. Berkeley, CA: LeOra Software.
  • Lümmen, P. (2007). "Mitochondrial electron transport complexes as biochemical target sites for insecticides and Acaricids”, Insecticides design using advanced technologies, 197-215.
  • Namin, H. H., Zhurov, V., Spenler, J., Grbić, M., Grbić, V., & Scott, I. M. (2020). Resistance to pyridaben in Canadian greenhouse populations of two-spotted spider mites, Tetranychus urticae (Koch). Pesticide Biochemistry and Physiology, 170, 104677.
  • Nauen, R., Stumpf, N., Elbert, A., Zebitz, C. P. W., & Kraus, W. (2001). Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Management Science, 57(3), 253–261.
  • Riga, M., Tsakireli, D., Ilias, A., Morou, E., Myridakis, A., Stephanou, E. G., Nauen, R., Dermauw, W., Van Leeuwen, T., & Paine, M. (2014). Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect biochemistry and molecular biology, 46, 43–53.
  • Rose, R. L., Barbhaiya, L., Roe, R. M., Rock, G. C., & Hodgson, E. (1995). Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemistry and Physiology, 51(3), 178–191.
  • Stumpf, N., & Nauen, R. (2001). Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 94(6), 1577–1583.
  • Stumpf, N., & Nauen, R. (2002). Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 72, 111–121.
  • Sugimoto, N., & Osakabe, M. (2014). Cross-resistance between cyenopyrafen and pyridaben in the twospotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest management science, 70(7), 1090–1096.
  • Tomlin, C. (2003). The e-Pesticide Manual, Version 3.0., BCPC. Crop Protection Publication: Cambridge, UK, CD-ROM.
  • Van de Vrie, M., McMurtry, J., & Huffaker, C. (1972). Ecology of tetranychid mites and their natural enemies: A review: III. Biology, ecology, and pest status, and host-plant relations of tetranychids. Hilgardia, 41(13), 343–432.
  • Van Leeuwen, T., & Tirry, L. (2007). Esterase‐mediated bifenthrin resistance in a multiresistant strain of the two‐spotted spider mite, Tetranychus urticae. Pest Management Science, 63(2), 150–156.
  • Van Pottelberge, S., Van Leeuwen, T., Nauen, R., & Tirry, L. (2009). Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bulletin of entomological research, 99(1), 23–31.
  • Wang, M., Liu, X., Shi, L., Liu, J., Shen, G., Zhang, P., Lu, W., & He, L. (2020). Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval). Insect Science, 27(2), 276–291.
  • Wei, P., Li, J., Liu, X., Nan, C., Shi, L., Zhang, Y., Li, C., & He, L. (2019). Functional analysis of four upregulated carboxylesterase genes associated with fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). Pest Management Science, 75(1), 252–261.
  • Wood, E., Latli, B., & Casida, J. E. (1996). Fenazaquin acaricide specific binding sites in NADH: Ubiquinone oxidoreductase and apparently the ATP synthase stalk. Pesticide biochemistry and physiology, 54(2), 135–145.
  • Xu, D., Zhang, Y., Zhang, Y., Wu, Q., Guo, Z., Xie, W., Zhou, X., & Wang, S. (2021). Transcriptome profiling and functional analysis suggest that the constitutive overexpression of four cytochrome P450s confers resistance to abamectin in Tetranychus urticae from China. Pest Management Science, 77(3), 1204–1213.
  • Yorulmaz Salman, S., & Sarıtaş, E. (2014). Acequinocyl resistance in Tetranychus urticae Koch (Acari: Tetranychidae): inheritance, synergists, cross-resistance and biochemical resistance mechanisms. International Journal of Acarology, 40(6), 428–435.
  • Zhang, Y., Xu, D., Zhang, Y., Wu, Q., Xie, W., Guo, Z., & Wang, S. (2022). Frequencies and mechanisms of pesticide resistance in Tetranychus urticae field populations in China. Insect Science, 29(3), 827–839.

Tetranychus urticae Koch, 1836 (Acari: Tetranychidae)’de pyridaben direnç oranı ve esteraz, GST ve P450 monooksijenaz enzim ilişkileri

Yıl 2024, , 201 - 208, 21.06.2024
https://doi.org/10.29050/harranziraat.1416292

Öz

İki noktalı kırmızıörümcek [Tetranychus urticae Koch, 1836 (Acari: Tetranychidae)], çeşitli bitki türlerinde beslenen ve tarım ürünlerinde ekonomik kayıp oluşturan zararlı organizmalardan biridir. Bu zararlının mücadelesinde sıklıkla sentetik kimyasalların kullanımı tercih edilmektedir. METI akarisitleri, yaygın olarak kullanılan kimyasal maddeler arasındadır. Yapılan çalışmada, T. urticae (GSS) popülasyonu pyridaben ile 10 kez selekte edilmiştir. Denemelerde LC50 değerleri, 1 kontrol+7 konsantrasyon, her konsantrasyon için 3 tekerrür ve her tekerrürde 25 birey olacak şekilde belirlenmiştir. Ölü canlı sayımları 24 saat sonra yapılmıştır. Ayrıca, laboratuvar koşullarında pyridaben ile selekte edilmiş T. urticae bireylerinde mikro plaka okuyucu kullanarak esteraz, P450 monooksijenaz ve glutatyon S-transferaz (GST) enzim aktiviteleri belirlenmiştir. T. urticae (GSS) popülasyonunun pyridaben ile 10 kez selekte edilmesi sonucu direnç oranının 64.2 kat arttığı tespit edilmiştir. Başlangıç, Seleksiyon 5 (S5) ve Seleksiyon 10 (S10) popülasyonlarında esteraz aktiviteleri sırasıyla 10.38, 11.45, 17.82 mOD min-1 mg-1 protein; P450 monooksijenaz aktiviteleri 0.0018, 0.0033 ve 0.0068 mOD min-1 mg-1 protein; GST aktiviteleri ise 3.0, 3.1 ve 3.5 mOD min-1 mg-1 protein olarak bulunmuştur. Bu sonuçlar, zararlının pyridaben etken maddesine karşı direnç geliştirmesinde esteraz ve monooksijenaz enzimlerinin rol oynayabileceğini düşündürmektedir. Zararlı organizmaların duyarlılık düzeylerinin düzenli olarak izlenmesi ve direncin kontrol altına alınması, tarımsal üretimde verimliliği ve bitki sağlığını korumak adına oldukça önemli bir adımdır.

Kaynakça

  • Alavijeh, E. S., Khajehali, J., Snoeck, S., Panteleri, R., Ghadamyari, M., Jonckheere, W., Bajda, S., Saalwaechter, C., Geibel, S., Douris, V., Vontas, J., Van Leeuwen, T., & Dermauw, W. (2020). Molecular and genetic analysis of resistance to METI-I acaricides in Iranian populations of the citrus red mite Panonychus citri. Pesticide Biochemistry and Physiology, 164, 73–84.
  • Assouguem, A., Kara, M., Mechchate, H., Korkmaz, Y. B., Benmessaoud, S., Ramzi, A., Abdullah, K. R., Noman, O. M., Farah, A., & Lazraq, A. (2022). Current Situation of Tetranychus urticae (Acari: Tetranychidae) in Northern Africa: The Sustainable Control Methods and Priorities for Future Research. Sustainability, 14(4), Article 4.
  • Badawy, M. E. I., Mahmoud, M. S., & Khattab, M. M. (2022). Toxicity, joint action effect, and enzymatic assays of abamectin, chlorfenapyr, and pyridaben against the two-spotted spider mite Tetranychus urticae. The Journal of Basic and Applied Zoology, 83(1), 22.
  • Bajda, S., Dermauw, W., Panteleri, R., Sugimoto, N., Douris, V., Tirry, L., ... & Van Leeuwen, T. (2017). A mutation in the PSST homologue of complex I (NADH: ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect biochemistry and molecular biology, 80, 79-90.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248–254.
  • Dekeyser, M. A. (2005). Acaricide mode of action. Pest Management Science, 61(2), 103–110.
  • Ding, T.-B., Niu, J.-Z., Yang, L.-H., Zhang, K., Dou, W., & Wang, J.-J. (2013). Transcription profiling of two cytochrome P450 genes potentially involved in acaricide metabolism in citrus red mite Panonychus citri. Pesticide Biochemistry and Physiology, 106(1), 28–37.
  • Feng, K., Ou, S., Zhang, P., Wen, X., Shi, L., Yang, Y., Hu, Y., Zhang, Y., Shen, G., Xu, Z., & He, L. (2020). The cytochrome P450 CYP389C16 contributes to the cross-resistance between cyflumetofen and pyridaben in Tetranychus cinnabarinus (Boisduval). Pest Management Science, 76(2), 665–675.
  • Goka, K. (1998). Mode of inheritance of resistance to three new acaricides in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Experimental & Applied Acarology, 22(12), 699–708.
  • Herron, G. A., & Rophail, J. (1998). Tebufenpyrad (Pyranica®) resistance detected in two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) from apples in Western Australia. Experimental & Applied Acarology, 22(11), 633–641.
  • Hollingworth, R. M., & Ahammadsahib, K. I. (1995). Inhibitors of respiratory complex I. Mechanisms, pesticidal actions and toxicology. Reviews in pesticide toxicology (USA).
  • Hu, J., Wang, C., Wang, J., You, Y., & Chen, F. (2010).Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards. Pest Management Science, 66(9), 1025–1030.
  • Jeppson, L. R., Keifer, H. H., & Baker, E. W. (1975). Mites injurious to economic plants. Univ of California Press.
  • Khalighi, M., Dermauw, W., Wybouw, N., Bajda, S., Osakabe, M., Tirry, L., & Van Leeuwen, T. (2016). Molecular analysis of cyenopyrafen resistance in the two‐spotted spider mite Tetranychus urticae. Pest Management Science, 72(1), 103–112.
  • Kim, Y., Park, H., Cho, J., & Ahn, Y. (2006). Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of economic entomology, 99(3), 954–958.
  • Knowles, C. O. (1997). Mechanisms of Resistance to Acaricides. Içinde V. Sjut (Ed.), Molecular Mechanisms of Resistance to Agrochemicals (ss. 57-77). Springer.
  • Koo, H.-N., Choi, J., Shin, E., Kang, W., Cho, S.-R., Kim, H., Park, B., & Kim, G.-H. (2021). Susceptibility to Acaricides and the Frequencies of Point Mutations in Etoxazole- and Pyridaben-Resistant Strains and Field Populations of the Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae). Insects, 12(7), Article 7.
  • LeOra, S. (1994). Polo-PC: Probit and Logit Analysis. Berkeley, CA: LeOra Software.
  • Lümmen, P. (2007). "Mitochondrial electron transport complexes as biochemical target sites for insecticides and Acaricids”, Insecticides design using advanced technologies, 197-215.
  • Namin, H. H., Zhurov, V., Spenler, J., Grbić, M., Grbić, V., & Scott, I. M. (2020). Resistance to pyridaben in Canadian greenhouse populations of two-spotted spider mites, Tetranychus urticae (Koch). Pesticide Biochemistry and Physiology, 170, 104677.
  • Nauen, R., Stumpf, N., Elbert, A., Zebitz, C. P. W., & Kraus, W. (2001). Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Management Science, 57(3), 253–261.
  • Riga, M., Tsakireli, D., Ilias, A., Morou, E., Myridakis, A., Stephanou, E. G., Nauen, R., Dermauw, W., Van Leeuwen, T., & Paine, M. (2014). Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect biochemistry and molecular biology, 46, 43–53.
  • Rose, R. L., Barbhaiya, L., Roe, R. M., Rock, G. C., & Hodgson, E. (1995). Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pesticide Biochemistry and Physiology, 51(3), 178–191.
  • Stumpf, N., & Nauen, R. (2001). Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 94(6), 1577–1583.
  • Stumpf, N., & Nauen, R. (2002). Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 72, 111–121.
  • Sugimoto, N., & Osakabe, M. (2014). Cross-resistance between cyenopyrafen and pyridaben in the twospotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest management science, 70(7), 1090–1096.
  • Tomlin, C. (2003). The e-Pesticide Manual, Version 3.0., BCPC. Crop Protection Publication: Cambridge, UK, CD-ROM.
  • Van de Vrie, M., McMurtry, J., & Huffaker, C. (1972). Ecology of tetranychid mites and their natural enemies: A review: III. Biology, ecology, and pest status, and host-plant relations of tetranychids. Hilgardia, 41(13), 343–432.
  • Van Leeuwen, T., & Tirry, L. (2007). Esterase‐mediated bifenthrin resistance in a multiresistant strain of the two‐spotted spider mite, Tetranychus urticae. Pest Management Science, 63(2), 150–156.
  • Van Pottelberge, S., Van Leeuwen, T., Nauen, R., & Tirry, L. (2009). Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bulletin of entomological research, 99(1), 23–31.
  • Wang, M., Liu, X., Shi, L., Liu, J., Shen, G., Zhang, P., Lu, W., & He, L. (2020). Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval). Insect Science, 27(2), 276–291.
  • Wei, P., Li, J., Liu, X., Nan, C., Shi, L., Zhang, Y., Li, C., & He, L. (2019). Functional analysis of four upregulated carboxylesterase genes associated with fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). Pest Management Science, 75(1), 252–261.
  • Wood, E., Latli, B., & Casida, J. E. (1996). Fenazaquin acaricide specific binding sites in NADH: Ubiquinone oxidoreductase and apparently the ATP synthase stalk. Pesticide biochemistry and physiology, 54(2), 135–145.
  • Xu, D., Zhang, Y., Zhang, Y., Wu, Q., Guo, Z., Xie, W., Zhou, X., & Wang, S. (2021). Transcriptome profiling and functional analysis suggest that the constitutive overexpression of four cytochrome P450s confers resistance to abamectin in Tetranychus urticae from China. Pest Management Science, 77(3), 1204–1213.
  • Yorulmaz Salman, S., & Sarıtaş, E. (2014). Acequinocyl resistance in Tetranychus urticae Koch (Acari: Tetranychidae): inheritance, synergists, cross-resistance and biochemical resistance mechanisms. International Journal of Acarology, 40(6), 428–435.
  • Zhang, Y., Xu, D., Zhang, Y., Wu, Q., Xie, W., Guo, Z., & Wang, S. (2022). Frequencies and mechanisms of pesticide resistance in Tetranychus urticae field populations in China. Insect Science, 29(3), 827–839.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Pestisititler ve Toksikoloji
Bölüm Araştırma Makaleleri
Yazarlar

Gizem Berber Tortop 0000-0003-3090-3705

Sibel Yorulmaz 0000-0003-3836-5673

Erken Görünüm Tarihi 19 Haziran 2024
Yayımlanma Tarihi 21 Haziran 2024
Gönderilme Tarihi 8 Ocak 2024
Kabul Tarihi 16 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Berber Tortop, G., & Yorulmaz, S. (2024). Tetranychus urticae Koch, 1836 (Acari: Tetranychidae)’de pyridaben direnç oranı ve esteraz, GST ve P450 monooksijenaz enzim ilişkileri. Harran Tarım Ve Gıda Bilimleri Dergisi, 28(2), 201-208. https://doi.org/10.29050/harranziraat.1416292

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.