Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the physiological and biochemical effects of humic acid application in strawberry plant grown under salt stress

Yıl 2021, , 326 - 335, 23.09.2021
https://doi.org/10.29050/harranziraat.905113

Öz

The reduction of salt toxicity in the soil environment significantly contributes to the growth and development of plants. In this study, tolerance and development status of strawberry plant were investigated through irrigation solution including 50 mmol L-1 NaCl salinity and the application of 50 mg L-1 humic acid (HA). The physiological and biochemical parameters in vegetative and fruit stages and the mineral contents of strawberry plants were assessed if application of HA contributed to salt tolerance mechanisms of strawberry plants. HA improved physiological parameters such as crown and root fresh weight, crown and root dry weight, stomatal conductance as well as improving biochemical parameters and reducing stress metabolites such as (total chlorophyll contents, proline, malondialdehyde, catalase, and peroxidase enzyme activities). HA application (50 mg L-1) under salt stress (50 mmol L-1) also improved the quality parameters such as vitamin C and lycopene contents. We suggest that HA application is beneficial via increasing the tolerance mechanisms of salt-sensitive strawberry plants.

Kaynakça

  • Abdel-Mawgoud, A. M. R., El-Greadly, N. H. M., Helmy, Y. I., & Singer, S. (2007). Responses of tomato Plants to different rates of humic-based fertilizer and NPK fertilization. Journal of Applied Sciences Research, 3, 169-174.
  • Ali, A. Y. A., Ibrahim, M. E. H., Zhou, G., Nimir, N. E. A., Jiao, X., Zhu, G., Elsiddig A. M. I., Zhi, W., Chen, X., & Lu, H. (2019). Ameliorative effects of jasmonic acid and humic acid on antioxidant enzymes and salt tolerance of forage sorghum under salinity conditions. Agronomy Journal, 111(6), 3099-3108.
  • Arnon, D. L. A. (1949). Copper enzyme is isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol, 24, 1-15.
  • Aydin, A., Kant, C., & Turan, M. (2012). Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research, 7, 1073–1086.
  • Barrett, D. M., & Anthon, G. (2001). Lycopene content of calıfornıa-grown tomato varıetıes. Acta Horticulturae, 542, 165-174.
  • Bates, L. S., Waldren R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
  • Bernstein, N., Shoresh, M., Xu, Y., & Huang, B., (2010). Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radical Biology Medicine, 49 (7), 1161–1171.
  • Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies. Agriculture, 1 (3), 1–11.
  • Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei, P., & Piccolo, A., (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27.
  • Catania, P., Comparetti, A., De Pasquale, C., Morello, G., & Vallone, M. (2020). Effects of the Extraction Technology on Pomegranate Juice Quality. Agronomy, 10, 10, 1483.
  • Chapman H. D. & Pratt P. F. (1961). Methods of analysis for soils, plants, and waters. Division of agricultural sciences, University of California USA.
  • Cvikrova, M., Hrubcova, M., Vagner, M., Machackova, I., & Eder, J. (1994). Phenolic acids and peroxidase activity in Alfalfa (Medicago sativa) embryogenic cultures after ethephon treatment. Plant Physiological, 91(2), 226-233.
  • Delfine, S., Tognetti, R., Desiderio, E., & Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development, 25, 183–191.
  • Dursun, A., Güvenç, İ., & Turan, M. (1999). Macro and micro nutrient contents of tomato and eggplant seedlings and their effects on seedling growthin relation to humic acid application, Improved Crop Quality by Nutrient Management, Anaç, D.; Martin-Prevel, P.Editors.; Kluwer Academic Publishers, Dordrecht, Boston, London.
  • Eyheraguibel, B., Silvestre, J., & Morard, P. (2008). Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize, Bioresource Technology. 99: 4206-4212.
  • Fan, H. M., Wang, X. W., Sun, X., Li, Y. Y., Sun, X. Z., & Zheng, C.S., (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum, Scientia Horticulturae, 177, 118-123.
  • Folta, K.M., & Davis, T.M. (2006). Strawberry genes and genomics. Critical Reviews in Plant Sciences, 25, 399–415.
  • Garriga, M., Muñoz, C.A., Caligari, P.D., & Retamales, J.B. (2015). Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry (F. chiloensis). Scientia Horticulturae, 195, 37-47.
  • Geçer, M. K. (2020). ffects of Humic Acid Application on Fruit Yield and Quality in Some Strawberry Cultivars. International Journal of Agriculture and Wildlife Science, 6(1), 21 – 27.
  • Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U., (2015). The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy, 130, 141–174. Hynes, R.J., & Naidu, R. (1998).
  • Influence of lime, fertilizer and manure application on soil organic matter content and soil physical conditions. A review of Nutrient Cyclic and Agroecosystem, 51:123-137.
  • Jamalian, S., Gholami, M., & Esna-Ashari, M. (2013). Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theoretical and Experimental Plant Physiology, 25, 291-299.
  • Jamalian, S., Tehranifar, A., Tafazoli, E., Eshghi, S., & Davarynejad, G.H. (2008). Paclobutrazol application ameliorates the negative effect of salt stress on reproductive growth, yield, and fruit quality of strawberry plants. Horticulture, Environment and Biotechnology, 49, 1–6.
  • Jarosova, M., Klejdus, B., Kovacik, J., Babula, P., & Hedbavny, J., (2016). Humic acid protects barley against salinity. Acta Physiologiae Plantarum, 38 (161), 1–9.
  • Karakas, S. (2013). Development of tomato growing in soil differing in salt levels and effects of companion plants on same physiological parameters and soil remediation. PhD University of Harran, Sanlıurfa, Turkey.
  • Karakas, S., Bolat I., & Dikilitas M. (2021). The Use of Halophytic Companion Plant (Portulaca oleracea L.) on Some Growth, Fruit, and Biochemical Parameters of Strawberry Plants under Salt Stress. Horticulturae, 7, 63.
  • Karakas, S., Cullu M.A., Kaya, C., & Dikilitas, M. (2016). Halophytic companion plants improve growth and physiological parameters of tomato plants grown under salinity. Pakistan Journal of Botany, 48, 21-28.
  • Karlidag, H., Yildirim, E., & Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria × ananassa). Scientia horticulturae, 130 (1), 133-140.
  • Keutgen, A. J., & Pawelzik, E., (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimentai Botany, 65 (2-3), 170–176.
  • Lotfi, R., Pessarakli, M., Gharavi-Kouchebagh, P., & Khoshvaghti, H., (2015). Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. Crop Journal, 3 (5), 434–439.
  • Masciandaro, G., Ceccanti, B., Ronchi, V., Benedicto, S., & Howard, L. (2002). Humic substances to reduce salt effect on plant germination and growth. Communications in Soil Science and Plant Analysis, 33, 365-378.
  • Milosevic, N., & Slusarenko, A. J. (1996). Active Oxygen Metabolism and Lignifications in The Hypersensitive Response in Bean. Physiological and Molecular Plant Pathology, 49, 143-158.
  • Moraditochaee M. (2012). Effects of humic acid foliar spraying and nitrogen fertilizer management on yield of peanut (Arachis hypogaea L.) in Iran. ARPN Journal of Agricultural and Biological Science, 7, 289–293.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
  • Orzolek, M. (1993). Use of hydrophilic polymers in horticulture. Hort. Tecnol., 3: 41-44.
  • Oz, A. T. (2002). Effects of two differrent temperatures on l-ascorbic acid content (Vıtamın C), lenght of storage time and fruit quality. Bahce, 31(1-2), 51-57.
  • Piccolo, A., Nardi, S., & Concheri, G. (1992). Structural characteristics of humic substance as related to nitrate uptake and growth regulation in plant systems. Soil Biology Biochemistry, 24, 373-380.
  • Pilanalı, N., & Kaplan, M. (2003). Investigation of Effects on Nutrient Uptake of Humic Acid Applications of Different Forms to Strawberry Plant. Journal of Plant Nutrition. 26, 4, 838 843.
  • Saidimoradia, D., Ghaderia, N., & Javadia, T. (2019). Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae 256, 108594.
  • Saied, A.S., Keutgen, A.J. & Noga, G. (2005). The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’and ‘Korona’. Horticulturae, 103, 289–303.
  • Sairam, R.K., & Sexena, D. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184, 55-61.
  • Sharif, M., Khattak, R. A., & Sarir, M.S. (2002). Effect of different levels of lignitic coal derived humic acid on growth of maize plants, Soil Science and Plant Analysis. 33, 3567- 3580.
  • Shulaev, V.; Korban, S. S.; Sosinski, B.; Abbott, A.G.; Aldwinckle, H.S.; Folta, K.M.; Iezzoni, A.; Main, D.; Arús, P.; Dandekar, A.M.; Lewers, K.; Brown, S. K.; Davis, T.M.; Gardiner, S.E., Potter, D., & Veilleux, R.E. (2008). Multiple models for rosaceae genomics. Plant Physiology, 147, 985–1003.
  • Trevisan, S., Pizzeghello, D., Ruperti, B., Francioso, O., Sassi, A., Palme, K., Quaggiotti, S. & Nardi, S. (2009). Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biology, 12, 604-614.
  • Wani, S.H., & Gosal, S.S., (2011). Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biologia Plantarum, 55 (3), 536–540.
  • Yaghubi, K., Ghaderi, N., Vafaee, Y., & Javadi, T. (2016). Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Scientia Horticulturae, 213, 87-95.

Tuz stresinde yetiştirilen çilek bitkisinde hümik asit uygulamasının fizyolojik ve biyokimyasal etkisinin belirlenmesi

Yıl 2021, , 326 - 335, 23.09.2021
https://doi.org/10.29050/harranziraat.905113

Öz

Topraktan tuz toksisitesinin azaltılması, bitkilerin büyüme ve gelişimine önemli katkılar sunmaktadır. Bu çalışmada 50 mmol L-1 NaCl içeren sulama suyu ile sulanan çilek bitkisinin 50 mg L-1 hümik Asit (HA) uygulaması ile tuz stresine karşı toleransı ve gelişim durumu araştırılmıştır. Çilek bitkilerinin tuz toleransına HA uygulamasının katkıda bulunup bulunmadığı, vejetatif ve meyve aşamalarında fizyolojik ve biyokimyasal parametreler ve çilek bitkilerinin mineral içerikleri değerlendirilmiştir. HA, taç ve kök taze ağırlığı, taç ve kök kuru ağırlığı, stomatal iletkenlik gibi fizyolojik parametri ve bunun yanı sıra artan biyokimyasal parametreler ve azalan stres metabolitleri ile (toplam klorofil, prolin, MDA, katalaz ve peroksidaz) bitki gelişimini sağlamıştır. Tuz stresi altında (50 mmol L-1) HA uygulamasının 50 mg L-1 vitamin C likopen gibi kalite parametrelerini artırdığı belirlenmiştir. HA uygulaması tuza hasas olan çilek bitkisinin tolerans mekanizmasını artırarak fayda sağlamıştır.

Kaynakça

  • Abdel-Mawgoud, A. M. R., El-Greadly, N. H. M., Helmy, Y. I., & Singer, S. (2007). Responses of tomato Plants to different rates of humic-based fertilizer and NPK fertilization. Journal of Applied Sciences Research, 3, 169-174.
  • Ali, A. Y. A., Ibrahim, M. E. H., Zhou, G., Nimir, N. E. A., Jiao, X., Zhu, G., Elsiddig A. M. I., Zhi, W., Chen, X., & Lu, H. (2019). Ameliorative effects of jasmonic acid and humic acid on antioxidant enzymes and salt tolerance of forage sorghum under salinity conditions. Agronomy Journal, 111(6), 3099-3108.
  • Arnon, D. L. A. (1949). Copper enzyme is isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol, 24, 1-15.
  • Aydin, A., Kant, C., & Turan, M. (2012). Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research, 7, 1073–1086.
  • Barrett, D. M., & Anthon, G. (2001). Lycopene content of calıfornıa-grown tomato varıetıes. Acta Horticulturae, 542, 165-174.
  • Bates, L. S., Waldren R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
  • Bernstein, N., Shoresh, M., Xu, Y., & Huang, B., (2010). Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radical Biology Medicine, 49 (7), 1161–1171.
  • Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies. Agriculture, 1 (3), 1–11.
  • Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei, P., & Piccolo, A., (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27.
  • Catania, P., Comparetti, A., De Pasquale, C., Morello, G., & Vallone, M. (2020). Effects of the Extraction Technology on Pomegranate Juice Quality. Agronomy, 10, 10, 1483.
  • Chapman H. D. & Pratt P. F. (1961). Methods of analysis for soils, plants, and waters. Division of agricultural sciences, University of California USA.
  • Cvikrova, M., Hrubcova, M., Vagner, M., Machackova, I., & Eder, J. (1994). Phenolic acids and peroxidase activity in Alfalfa (Medicago sativa) embryogenic cultures after ethephon treatment. Plant Physiological, 91(2), 226-233.
  • Delfine, S., Tognetti, R., Desiderio, E., & Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development, 25, 183–191.
  • Dursun, A., Güvenç, İ., & Turan, M. (1999). Macro and micro nutrient contents of tomato and eggplant seedlings and their effects on seedling growthin relation to humic acid application, Improved Crop Quality by Nutrient Management, Anaç, D.; Martin-Prevel, P.Editors.; Kluwer Academic Publishers, Dordrecht, Boston, London.
  • Eyheraguibel, B., Silvestre, J., & Morard, P. (2008). Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize, Bioresource Technology. 99: 4206-4212.
  • Fan, H. M., Wang, X. W., Sun, X., Li, Y. Y., Sun, X. Z., & Zheng, C.S., (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum, Scientia Horticulturae, 177, 118-123.
  • Folta, K.M., & Davis, T.M. (2006). Strawberry genes and genomics. Critical Reviews in Plant Sciences, 25, 399–415.
  • Garriga, M., Muñoz, C.A., Caligari, P.D., & Retamales, J.B. (2015). Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry (F. chiloensis). Scientia Horticulturae, 195, 37-47.
  • Geçer, M. K. (2020). ffects of Humic Acid Application on Fruit Yield and Quality in Some Strawberry Cultivars. International Journal of Agriculture and Wildlife Science, 6(1), 21 – 27.
  • Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U., (2015). The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy, 130, 141–174. Hynes, R.J., & Naidu, R. (1998).
  • Influence of lime, fertilizer and manure application on soil organic matter content and soil physical conditions. A review of Nutrient Cyclic and Agroecosystem, 51:123-137.
  • Jamalian, S., Gholami, M., & Esna-Ashari, M. (2013). Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theoretical and Experimental Plant Physiology, 25, 291-299.
  • Jamalian, S., Tehranifar, A., Tafazoli, E., Eshghi, S., & Davarynejad, G.H. (2008). Paclobutrazol application ameliorates the negative effect of salt stress on reproductive growth, yield, and fruit quality of strawberry plants. Horticulture, Environment and Biotechnology, 49, 1–6.
  • Jarosova, M., Klejdus, B., Kovacik, J., Babula, P., & Hedbavny, J., (2016). Humic acid protects barley against salinity. Acta Physiologiae Plantarum, 38 (161), 1–9.
  • Karakas, S. (2013). Development of tomato growing in soil differing in salt levels and effects of companion plants on same physiological parameters and soil remediation. PhD University of Harran, Sanlıurfa, Turkey.
  • Karakas, S., Bolat I., & Dikilitas M. (2021). The Use of Halophytic Companion Plant (Portulaca oleracea L.) on Some Growth, Fruit, and Biochemical Parameters of Strawberry Plants under Salt Stress. Horticulturae, 7, 63.
  • Karakas, S., Cullu M.A., Kaya, C., & Dikilitas, M. (2016). Halophytic companion plants improve growth and physiological parameters of tomato plants grown under salinity. Pakistan Journal of Botany, 48, 21-28.
  • Karlidag, H., Yildirim, E., & Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria × ananassa). Scientia horticulturae, 130 (1), 133-140.
  • Keutgen, A. J., & Pawelzik, E., (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimentai Botany, 65 (2-3), 170–176.
  • Lotfi, R., Pessarakli, M., Gharavi-Kouchebagh, P., & Khoshvaghti, H., (2015). Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. Crop Journal, 3 (5), 434–439.
  • Masciandaro, G., Ceccanti, B., Ronchi, V., Benedicto, S., & Howard, L. (2002). Humic substances to reduce salt effect on plant germination and growth. Communications in Soil Science and Plant Analysis, 33, 365-378.
  • Milosevic, N., & Slusarenko, A. J. (1996). Active Oxygen Metabolism and Lignifications in The Hypersensitive Response in Bean. Physiological and Molecular Plant Pathology, 49, 143-158.
  • Moraditochaee M. (2012). Effects of humic acid foliar spraying and nitrogen fertilizer management on yield of peanut (Arachis hypogaea L.) in Iran. ARPN Journal of Agricultural and Biological Science, 7, 289–293.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
  • Orzolek, M. (1993). Use of hydrophilic polymers in horticulture. Hort. Tecnol., 3: 41-44.
  • Oz, A. T. (2002). Effects of two differrent temperatures on l-ascorbic acid content (Vıtamın C), lenght of storage time and fruit quality. Bahce, 31(1-2), 51-57.
  • Piccolo, A., Nardi, S., & Concheri, G. (1992). Structural characteristics of humic substance as related to nitrate uptake and growth regulation in plant systems. Soil Biology Biochemistry, 24, 373-380.
  • Pilanalı, N., & Kaplan, M. (2003). Investigation of Effects on Nutrient Uptake of Humic Acid Applications of Different Forms to Strawberry Plant. Journal of Plant Nutrition. 26, 4, 838 843.
  • Saidimoradia, D., Ghaderia, N., & Javadia, T. (2019). Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae 256, 108594.
  • Saied, A.S., Keutgen, A.J. & Noga, G. (2005). The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’and ‘Korona’. Horticulturae, 103, 289–303.
  • Sairam, R.K., & Sexena, D. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184, 55-61.
  • Sharif, M., Khattak, R. A., & Sarir, M.S. (2002). Effect of different levels of lignitic coal derived humic acid on growth of maize plants, Soil Science and Plant Analysis. 33, 3567- 3580.
  • Shulaev, V.; Korban, S. S.; Sosinski, B.; Abbott, A.G.; Aldwinckle, H.S.; Folta, K.M.; Iezzoni, A.; Main, D.; Arús, P.; Dandekar, A.M.; Lewers, K.; Brown, S. K.; Davis, T.M.; Gardiner, S.E., Potter, D., & Veilleux, R.E. (2008). Multiple models for rosaceae genomics. Plant Physiology, 147, 985–1003.
  • Trevisan, S., Pizzeghello, D., Ruperti, B., Francioso, O., Sassi, A., Palme, K., Quaggiotti, S. & Nardi, S. (2009). Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biology, 12, 604-614.
  • Wani, S.H., & Gosal, S.S., (2011). Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biologia Plantarum, 55 (3), 536–540.
  • Yaghubi, K., Ghaderi, N., Vafaee, Y., & Javadi, T. (2016). Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Scientia Horticulturae, 213, 87-95.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimi ve Ekolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Sema Karakaş Dikilitaş 0000-0003-1617-9407

Murat Dikilitaş 0000-0002-7399-4750

Yayımlanma Tarihi 23 Eylül 2021
Gönderilme Tarihi 29 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Karakaş Dikilitaş, S., & Dikilitaş, M. (2021). Determination of the physiological and biochemical effects of humic acid application in strawberry plant grown under salt stress. Harran Tarım Ve Gıda Bilimleri Dergisi, 25(3), 326-335. https://doi.org/10.29050/harranziraat.905113

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.