Araştırma Makalesi
BibTex RIS Kaynak Göster

Kuraklık ve tuz stresinin V. vinifera x V. rupestris melezlerinin toplam fenolik bileşik ve antioksidan kapasiteleri üzerine etkileri

Yıl 2022, Cilt: 26 Sayı: 1, 72 - 81, 25.03.2022
https://doi.org/10.29050/harranziraat.1018772

Öz

Çalışmada; melezleme ıslahı ile elde edilmiş olan 11 adet Karadimrit x 140 Ruggeri genotipine kuraklık ve tuz stresi uygulanmış, fenolik bileşik ve antioksidan miktarlarındaki değişimler tespit edilmiştir. F1 genotiplerinde tuz uygulamaları sonucunda, yapraklarda ölçülen toplam fenolik bileşik (TFB) içerikleri 13 388-30 093 mg GAE kg-1 KA ve antioksidan kapasite (TEAK) miktarları 125.7-301.6 μmol troloks g-1 KA arasında değerler vermiştir. Kuraklık uygulaması sonuçlarına göre sırasıyla; 17 674-36 706 mg GAE kg-1 KA ve 155.2-373.0 μmol troloks g-1 KA arasında değerler kaydedilmiştir. Tuz ve kuraklık uygulanmış genotiplerden toplam fenolik bileşik miktarlarında en fazla artışı sırasıyla 3. genotip (% 113.0) ve 2. genotip (% 113.0) gösterirken, antioksidan kapasite miktarlarında da en yüksek artış aynı genotiplerde % 133.8 ve % 96.3 değerleri ile meydana gelmiştir. Tuz uygulamaları sonrasında elde edilen sonuçlarda en yüksek değerleri her iki analiz (TFB, TEAK) için de 11. melez, kuraklık uygulamalarında ise 2. melez göstermiştir. Melezlerin tuz ve kuraklık streslerine karşı verdikleri tepkiler farklılık göstermiştir.

Destekleyen Kurum

Ankara Üniversitesi

Proje Numarası

19L0447005

Kaynakça

  • Aljuhaimi, F., Uslu, N., Özcan, M. M., Gülcü, M., Ahmed, I. A. M., Alqah, H. A. S., Osman, M. A. & Gassem, M. A. (2019). Effect of fermentation on antioxidant activity and phenolic compounds of the leaves of five grape varieties. Journal of Food Processing and Preservation, 43(7), 1–7. DOI:https://doi.org/10.1111/jfpp.13979.
  • Arroyo-Garcia, R., Ruiz-Garcia, L., Bolling, L., Ocete, R., López, M. A., Arnold, C., Ergul, A., Söylemezoğlu, G., Uzun, H. İ., Cabello, F. et al. (2006). Genetic evidence for the existence of independent domestication events in grapevine. Molecular Ecology, 15(12), 3707-3714.
  • Bartolome, B., Nunez, V., Monagas, M. & Gomez Cordoves, C. (2004). In vitro antioxidant activity of red grape skins. European Food Research and Technology, 218(2), 173-177.
  • Bindon, K. A., Dry, P. R. & Loveys, B. R. (2007). Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. cv. Cabernet Sauvignon grape berries. Journal of Agricultural and Food Chemistry, 55, 4493–4500. DOI:10.1021/jf063331p.
  • Cramer, G. R., Ergül, A., Grimplet, J., Tillett, R. L., Tattersall, E. A. R., Bohlman, M. C., Vincent, D., Sonderrgger, J., Evans, J., Osborne, C., Quilici, D., Schlauch, K. A., Scholley, D. A. & Cushman, J. C. (2007). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7(2); 111-134.
  • Çakır, A. (2011). Bağcılıkta Abiyotik Stres Koşullarına Yönelik Melezlemelerden Kuraklık ve Tuz Stresine Toleranslı Ümitvar Tiplerin Elde Edilmesi, (Yayınlanmış Doktora Tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Çulha, Ş. & Çakırlar, H. (2011). Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11, 11-34.
  • Eriş, A. (1992). Özel Bağcılık. Uludag Üniv. Zir. Fak. Ders Notları No: 52; 212 p.
  • Farhadi, K., Esmaeilzadeh, F., Hatami, M., Forough, M. & Molaie, R. (2015). Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azarbaijan province, Iran. Food Chemistry DOI: http://dx.doi.org/10.1016/j.foodchem.2015.12.083.
  • Fidan, Y. (1985). Özel Bağcılık. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ders Kitabı, No: 265. 401 s.
  • Göktürk Baydar, N., Özkan, G. & Yaşar, S. (2007). Evaluation of the antiradical and antioxidant potential of grape extracts. Food Control, 18(9), 1131-1136.
  • Gülcü, M., Ghafoor, K., Al-Juhaimi, F., Özcan, M. M., Uslu, N., Babiker, E. E., Ahmed, I. A. M. & Azmi, I. U. (2020). Effect of grape (Vitis vinifera L.) varieties and harvest periods on bioactive compounds, antioxidant activity, phenolic composition, mineral contents, and fatty acid compositions of Vitis leave and oils. Journal of food processing and preservation, 44:e14890, DOI: https://doi.org/10.1111/jfpp.14890.
  • Güler, A. & Candemir, A. (2014). Total phenolic and flavonoid contents, phenolic compositions and color properties of fresh grape leaves. Türk Tarım ve Doğa Bilimleri Dergisi, 1(Özel Sayı-1), 778–782.
  • Jaradat, N. A., Zaid, A. N., Hussen, F. & Ali, I. (2017). The effects of preservation methods of grapevine leaves on total phenols, total flavonoids and antioxidant activity. Marmara Pharmaceutical Journal, 21(2), 291-297.
  • Karadeniz, F., Burdurlu, H. S., Koca, N. & Soyer, Y. (2005) Antioxidant activitiy of selected fruits and vegetables grown in Turkey. Turkısh Journal of Agrıculture and Forestry, 29, 297-303.
  • Karimi, R., Ghabooli, M., Rahimi, J. & Amerian, M. (2020). Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. Journal of Plant Nutrition, 43(14), 2226-2242. DOI: https://doi.org/10.1080/01904167.2020.1766072.
  • Katalinic, V., Mozina, S. S., Generalic, I., Skroza, D., Ljubenkov, I. & Klancnik, A. (2013) Phenolic Profile, Antioxidant Capacity, and Antimicrobial Activity of Leaf Extracts from Six Vitis vinifera L. Varieties. International Journal of Food Properties, 16(1), 45-60, DOI: 10.1080/10942912.2010.526274.
  • Kennedy, J. A., Matthews, M. A. & Waterhouse, A. L. (2002). Effect of maturity and vine water status on grape skin and wine flavonoids. American Journal of Enology and Viticulture, 53(4), 268–274.
  • Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y. & van Leeuwen, C. (2006). Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.) effects on wine phenolic and aroma components. Journal of Agricultural and Food Chemistry, 54, 5077–5086. DOI:10.1021/jf0605446.
  • Lardos, A. & Kreuter, M. H. (2000). Red Vine Leaf. Ed. By, Kreuter, M. H., & Flachsmann, A. G. Intercity Pharmaceuticals and Extracts, Zurich, Switzerland, 1–7.
  • Marušić, R. (1990). Ljekovitim biljem do zdravlja/Through herbal medicine to health. Milač, M. (ed.), Zagreb: Mladost, pp. 358.
  • Matthews, M. A. & Anderson, M. M. (1988). Fruit ripening in Vitis vinifera L.: responses to seasonal water deWts, American Journal of Enology and Viticulture, 39, 313–320.
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A. & Deloire, A. (2002). Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture, 53, 261–267.
  • Oliveira, C., Silva-Ferreira, A. C., Mendes Pinto, M., Hogg, T., Alves, F. & Guedes de Pinho, P. (2003). Carotenoid compounds in grapes and their relationship to plant water status. Journal of Agricultural and Food Chemistry, 51, 5967–5971, DOI: 10.1021/jf034275k.
  • Orhan, D. D., Orhan, N., Ozcelik, B. & Ergun, F. (2009). Biological activities of Vitis vinifera L. leaves. Turkish Journal of Biology,33, 341–348.
  • Pantelić, M. M., Zagoraca, D. Č. D., Ćirića, I. Z., Pergalb, M. V., Relićc, D. J., Todićd, S. R. & Natićc, M. M. (2017). Phenolic profiles, antioxidant activity and minerals in leaves of different grapevine varieties grown in Serbia. Journal of Food Composition and Analysis,62, 76–83.
  • Pastrana-Bonılla, E., Akoh, C. C., Sellappan, S. & Krewer, G. (2003). Phenolic Content and Antioxidant Capacity of Muscadine Grapes. Journal of agricultural and food chemistry, 51(18), 5497-5503.
  • Pedreira dos Santos, T., Lopes, C. M., Rodrigues, M. L., de Souza, C. R., Ricardo-daSilva, J. M., Maroco, J. P., Pereira, J. S. & Chaves, M. M. (2007). Effect of deficit irrigation strategies on cluster microclimate for improving composition of Moscatel field-grown grapevines. Scientia Horticulturae, 112, 321–330. DOI:10.1016/j.scienta.2007.01.006.
  • Poni, S., Bernizzoni, F. & Civardi, S. (2007). Response of ‘Sangiovese’ grapevines to partial root-zone drying: gas-exchange, growth and grape composition. Scientia Horticulturae, 114, 96–103. DOI:10.1016/ j.scienta.2007.06.003.
  • Radovanovic, B., Andjelkovic, M., Radovanovic, V., Milenkovic-Andjelkovic, A. & Dekic, S. (2015). Polyphenols and antioxidant activity of different vinegrape leaves. Zbornik Radova, 20, 347–352.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Biology and Medicine, 26, 1231–1237.
  • Ribéreau-Gayon, P., Dubourdieu, D., Glories, Y. & Maujean, A. (2000). Handbook Of Enology, Volume 2: The Chemistry Of Wine And Stabilization And Treatments. John Wiley And Sons Ltd., England.
  • Singleton, V. L. & Rossi, J. J. A. (1965). Colorimetric of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • Sivritepe, N. (2001). Doğada Oksidatif Stres: Asma, Üzüm ve Şarapta Antioksidantlar. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 11(2), 108-135.
  • Soltekin, R. O. (2019). Bazı Sofralık Üzüm Çeşitlerinde Su Stresinin Omca Gelişimi, Verimi ve Üzüm Kalitesi Üzerine Etkileri, (Yayınlanmış Doktora Tezi), Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • Tahmaz, H. & Söylemezoğlu, G. (2019). Denizli–çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi. Bahçe, 48(1), 39–48.
  • Tattersall, E. A. R., Grimplet, J., DeLuc, L., Wheatley, M. D., Vincent, D., Osborne, C., Ergül, A., Lomen, E., Blank, R. R., Schlauch, K.A., Cushman, J. C. & Cramer, G. R. (2007). Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Functional and Integrative Genomics, 7(4), 317–333. DOI: https://doi.org/10.1007/s10142-007-0051-x.
  • TÜİK, (2021). Web Sitesi. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1. Erişim Tarihi: 12.08.2021.
  • Yeşiloğlu, Y. & Gülen, S. (2016). Total phenolic and flavonoid contents and antioxidant activity of extracts from Vitis vinifera L. Bulgarian Chemical Communications, 48, 9–13.
  • Yüksel, D., Tahmaz, H., Söylemezoğlu, G., Demirer, B., Gokturk Baydar, N. & Çelik, H. (2020). Comparison of antioxidant capacity and phenolic compound contents in different tissues of sixteen red grape cultivars grown at Kalecik Viticultural Research and Experiment Station in Ankara, Turkey. Acta Horticulturae, 1276. DOI: 10.17660/ActaHortic.2020.1276.19.

Effects of drought and salt stress on total phenolic compound and antioxidant capacities of V. vinifera x V. rupestris hybrids

Yıl 2022, Cilt: 26 Sayı: 1, 72 - 81, 25.03.2022
https://doi.org/10.29050/harranziraat.1018772

Öz

In the study; drought and salt stress were applied to 11 Karadimrit x 140 Ruggeri genotypes obtained by crossbreeding, and the changes in the amounts of phenolic compounds and antioxidants were determined. As a result of salt applications in the F1 genotypes, the total phenolic compound (TPC) contents measured in the leaves were 13 388-30 093 mg GAE kg-1DW and the antioxidant capacity (TEAC) amounts were between 125.7-301.6 μmol trolox g-1 DW. According to the results of drought application, respectively; values between 17 674-36 706 mg GAE kg-1 DW and 155.2-373.0 μmol trolox g-1 DW were recorded. Among the genotypes treated with salt and drought, the highest increase in total phenolic compounds was observed in the 3rd genotype (113.0%) and the 2nd genotype (113.0%), while the highest increase in antioxidant capacity occurred in the same genotypes with values of 133.8% and 96.3%. In the results obtained after salt applications, the 11th hybrid showed the highest values for both analyzes (TPC, TEAC) and the second hybrid in drought applications. The responses of hybrids to salt and drought stresses differed.

Proje Numarası

19L0447005

Kaynakça

  • Aljuhaimi, F., Uslu, N., Özcan, M. M., Gülcü, M., Ahmed, I. A. M., Alqah, H. A. S., Osman, M. A. & Gassem, M. A. (2019). Effect of fermentation on antioxidant activity and phenolic compounds of the leaves of five grape varieties. Journal of Food Processing and Preservation, 43(7), 1–7. DOI:https://doi.org/10.1111/jfpp.13979.
  • Arroyo-Garcia, R., Ruiz-Garcia, L., Bolling, L., Ocete, R., López, M. A., Arnold, C., Ergul, A., Söylemezoğlu, G., Uzun, H. İ., Cabello, F. et al. (2006). Genetic evidence for the existence of independent domestication events in grapevine. Molecular Ecology, 15(12), 3707-3714.
  • Bartolome, B., Nunez, V., Monagas, M. & Gomez Cordoves, C. (2004). In vitro antioxidant activity of red grape skins. European Food Research and Technology, 218(2), 173-177.
  • Bindon, K. A., Dry, P. R. & Loveys, B. R. (2007). Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. cv. Cabernet Sauvignon grape berries. Journal of Agricultural and Food Chemistry, 55, 4493–4500. DOI:10.1021/jf063331p.
  • Cramer, G. R., Ergül, A., Grimplet, J., Tillett, R. L., Tattersall, E. A. R., Bohlman, M. C., Vincent, D., Sonderrgger, J., Evans, J., Osborne, C., Quilici, D., Schlauch, K. A., Scholley, D. A. & Cushman, J. C. (2007). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7(2); 111-134.
  • Çakır, A. (2011). Bağcılıkta Abiyotik Stres Koşullarına Yönelik Melezlemelerden Kuraklık ve Tuz Stresine Toleranslı Ümitvar Tiplerin Elde Edilmesi, (Yayınlanmış Doktora Tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Çulha, Ş. & Çakırlar, H. (2011). Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11, 11-34.
  • Eriş, A. (1992). Özel Bağcılık. Uludag Üniv. Zir. Fak. Ders Notları No: 52; 212 p.
  • Farhadi, K., Esmaeilzadeh, F., Hatami, M., Forough, M. & Molaie, R. (2015). Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azarbaijan province, Iran. Food Chemistry DOI: http://dx.doi.org/10.1016/j.foodchem.2015.12.083.
  • Fidan, Y. (1985). Özel Bağcılık. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ders Kitabı, No: 265. 401 s.
  • Göktürk Baydar, N., Özkan, G. & Yaşar, S. (2007). Evaluation of the antiradical and antioxidant potential of grape extracts. Food Control, 18(9), 1131-1136.
  • Gülcü, M., Ghafoor, K., Al-Juhaimi, F., Özcan, M. M., Uslu, N., Babiker, E. E., Ahmed, I. A. M. & Azmi, I. U. (2020). Effect of grape (Vitis vinifera L.) varieties and harvest periods on bioactive compounds, antioxidant activity, phenolic composition, mineral contents, and fatty acid compositions of Vitis leave and oils. Journal of food processing and preservation, 44:e14890, DOI: https://doi.org/10.1111/jfpp.14890.
  • Güler, A. & Candemir, A. (2014). Total phenolic and flavonoid contents, phenolic compositions and color properties of fresh grape leaves. Türk Tarım ve Doğa Bilimleri Dergisi, 1(Özel Sayı-1), 778–782.
  • Jaradat, N. A., Zaid, A. N., Hussen, F. & Ali, I. (2017). The effects of preservation methods of grapevine leaves on total phenols, total flavonoids and antioxidant activity. Marmara Pharmaceutical Journal, 21(2), 291-297.
  • Karadeniz, F., Burdurlu, H. S., Koca, N. & Soyer, Y. (2005) Antioxidant activitiy of selected fruits and vegetables grown in Turkey. Turkısh Journal of Agrıculture and Forestry, 29, 297-303.
  • Karimi, R., Ghabooli, M., Rahimi, J. & Amerian, M. (2020). Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. Journal of Plant Nutrition, 43(14), 2226-2242. DOI: https://doi.org/10.1080/01904167.2020.1766072.
  • Katalinic, V., Mozina, S. S., Generalic, I., Skroza, D., Ljubenkov, I. & Klancnik, A. (2013) Phenolic Profile, Antioxidant Capacity, and Antimicrobial Activity of Leaf Extracts from Six Vitis vinifera L. Varieties. International Journal of Food Properties, 16(1), 45-60, DOI: 10.1080/10942912.2010.526274.
  • Kennedy, J. A., Matthews, M. A. & Waterhouse, A. L. (2002). Effect of maturity and vine water status on grape skin and wine flavonoids. American Journal of Enology and Viticulture, 53(4), 268–274.
  • Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y. & van Leeuwen, C. (2006). Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.) effects on wine phenolic and aroma components. Journal of Agricultural and Food Chemistry, 54, 5077–5086. DOI:10.1021/jf0605446.
  • Lardos, A. & Kreuter, M. H. (2000). Red Vine Leaf. Ed. By, Kreuter, M. H., & Flachsmann, A. G. Intercity Pharmaceuticals and Extracts, Zurich, Switzerland, 1–7.
  • Marušić, R. (1990). Ljekovitim biljem do zdravlja/Through herbal medicine to health. Milač, M. (ed.), Zagreb: Mladost, pp. 358.
  • Matthews, M. A. & Anderson, M. M. (1988). Fruit ripening in Vitis vinifera L.: responses to seasonal water deWts, American Journal of Enology and Viticulture, 39, 313–320.
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A. & Deloire, A. (2002). Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture, 53, 261–267.
  • Oliveira, C., Silva-Ferreira, A. C., Mendes Pinto, M., Hogg, T., Alves, F. & Guedes de Pinho, P. (2003). Carotenoid compounds in grapes and their relationship to plant water status. Journal of Agricultural and Food Chemistry, 51, 5967–5971, DOI: 10.1021/jf034275k.
  • Orhan, D. D., Orhan, N., Ozcelik, B. & Ergun, F. (2009). Biological activities of Vitis vinifera L. leaves. Turkish Journal of Biology,33, 341–348.
  • Pantelić, M. M., Zagoraca, D. Č. D., Ćirića, I. Z., Pergalb, M. V., Relićc, D. J., Todićd, S. R. & Natićc, M. M. (2017). Phenolic profiles, antioxidant activity and minerals in leaves of different grapevine varieties grown in Serbia. Journal of Food Composition and Analysis,62, 76–83.
  • Pastrana-Bonılla, E., Akoh, C. C., Sellappan, S. & Krewer, G. (2003). Phenolic Content and Antioxidant Capacity of Muscadine Grapes. Journal of agricultural and food chemistry, 51(18), 5497-5503.
  • Pedreira dos Santos, T., Lopes, C. M., Rodrigues, M. L., de Souza, C. R., Ricardo-daSilva, J. M., Maroco, J. P., Pereira, J. S. & Chaves, M. M. (2007). Effect of deficit irrigation strategies on cluster microclimate for improving composition of Moscatel field-grown grapevines. Scientia Horticulturae, 112, 321–330. DOI:10.1016/j.scienta.2007.01.006.
  • Poni, S., Bernizzoni, F. & Civardi, S. (2007). Response of ‘Sangiovese’ grapevines to partial root-zone drying: gas-exchange, growth and grape composition. Scientia Horticulturae, 114, 96–103. DOI:10.1016/ j.scienta.2007.06.003.
  • Radovanovic, B., Andjelkovic, M., Radovanovic, V., Milenkovic-Andjelkovic, A. & Dekic, S. (2015). Polyphenols and antioxidant activity of different vinegrape leaves. Zbornik Radova, 20, 347–352.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Biology and Medicine, 26, 1231–1237.
  • Ribéreau-Gayon, P., Dubourdieu, D., Glories, Y. & Maujean, A. (2000). Handbook Of Enology, Volume 2: The Chemistry Of Wine And Stabilization And Treatments. John Wiley And Sons Ltd., England.
  • Singleton, V. L. & Rossi, J. J. A. (1965). Colorimetric of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • Sivritepe, N. (2001). Doğada Oksidatif Stres: Asma, Üzüm ve Şarapta Antioksidantlar. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 11(2), 108-135.
  • Soltekin, R. O. (2019). Bazı Sofralık Üzüm Çeşitlerinde Su Stresinin Omca Gelişimi, Verimi ve Üzüm Kalitesi Üzerine Etkileri, (Yayınlanmış Doktora Tezi), Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • Tahmaz, H. & Söylemezoğlu, G. (2019). Denizli–çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi. Bahçe, 48(1), 39–48.
  • Tattersall, E. A. R., Grimplet, J., DeLuc, L., Wheatley, M. D., Vincent, D., Osborne, C., Ergül, A., Lomen, E., Blank, R. R., Schlauch, K.A., Cushman, J. C. & Cramer, G. R. (2007). Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Functional and Integrative Genomics, 7(4), 317–333. DOI: https://doi.org/10.1007/s10142-007-0051-x.
  • TÜİK, (2021). Web Sitesi. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1. Erişim Tarihi: 12.08.2021.
  • Yeşiloğlu, Y. & Gülen, S. (2016). Total phenolic and flavonoid contents and antioxidant activity of extracts from Vitis vinifera L. Bulgarian Chemical Communications, 48, 9–13.
  • Yüksel, D., Tahmaz, H., Söylemezoğlu, G., Demirer, B., Gokturk Baydar, N. & Çelik, H. (2020). Comparison of antioxidant capacity and phenolic compound contents in different tissues of sixteen red grape cultivars grown at Kalecik Viticultural Research and Experiment Station in Ankara, Turkey. Acta Horticulturae, 1276. DOI: 10.17660/ActaHortic.2020.1276.19.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı
Bölüm Araştırma Makaleleri
Yazarlar

Damla Yüksel Küskü 0000-0001-5398-1146

Gökhan Söylemezoğlu 0000-0002-7959-0407

Proje Numarası 19L0447005
Yayımlanma Tarihi 25 Mart 2022
Gönderilme Tarihi 9 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 1

Kaynak Göster

APA Yüksel Küskü, D., & Söylemezoğlu, G. (2022). Kuraklık ve tuz stresinin V. vinifera x V. rupestris melezlerinin toplam fenolik bileşik ve antioksidan kapasiteleri üzerine etkileri. Harran Tarım Ve Gıda Bilimleri Dergisi, 26(1), 72-81. https://doi.org/10.29050/harranziraat.1018772

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.