Araştırma Makalesi
BibTex RIS Kaynak Göster

Biber meyvelerinde hasat sonrası çürümelere sebep olan bazı fungal hastalık etmenlerine karşı Isothiocyanate bileşiklerinin antifungal etkilerinin belirlenmesi

Yıl 2022, Cilt: 26 Sayı: 3, 290 - 302, 23.09.2022
https://doi.org/10.29050/harranziraat.1136632

Öz

Depolanmış ürünlerde sorun olan fungal hastalık etmenleri, hasat sonrası ürünlerde kaliteyi sınırlandıran önemli faktörlerden biridir. Hasat sonrası kurutulmalık biberler mikotoksin üreten fungal patojenler tarafından çok sık enfekte olmaktadırlar. Aspergillus niger, Alternaria alternata ve Fusarium incarnatum, birçok bitkide hasat öncesi ve sonrası dönemlerde hastalıklara neden olan potansiyel mikotoksin üretebilen önemli fungal etmenlerdir. Brassica spp. tarafından üretilen ve geniş antimikrobiyal etkiye sahip olan isothiocyanate (ITC)’lar, glukozinolatların biyolojik olarak aktif bozulma ürünleri ile bağlantılı allelokimyasal bileşiklerdir. Bu çalışmada, farklı kimyasal yapıdaki isothiocyanate bileşiklerden methyl isothiocyanate (MITC), 2-propenyl (Allyl) isothiocyanate (AITC), benzyl isothiocyanate (BITC) ve ethyl isothiocyanate (EITC)’ın Aspergillus niger, Alternaria alternata ve Fusarium incarnatum izolatlarına karşı in vitro antifungal etkileri araştırılmıştır. Test edilen Fusarium incarnatum, Aspergillus niger ve Alternaria alternata’nın misel gelişimini tamamen engelleyen konsantrasyonları (MIC) baz alındığında en yüksek antifungal etkinlik MITC tarafından sırasıyla 0.06, 0.09 ve 0.09 μl petri-1 konsantrasyonlarında gösterilmiştir. En düşük antifungal aktivite ise A. niger ile F. incarnatum’a karşı EITC (0.15 ve 0.21 μl petri-1), A. alternata’ya karşı ise AITC ve BITC (0.21 μl petri-1) tarafından gösterilmiştir. Farklı yapıdaki ITC’ların MIC değerlerinde genelde fungisidal etkiye sahip olduğu belirlenmiştir. Elde edilen sonuçlar, oldukça düşük konsantrasyonlarda antifungal etkinlik gösteren isothiocyanate’ların, depolanmış tarımsal ürünlerde bozulmalara neden fungal etmenlere karşı fumigant olarak olarak uygulanabilir potansiyele sahip olduğunu göstermiştir.

Destekleyen Kurum

Hatay Mustafa Kemal Üniversitesi, Bilimsel Araştırma Projeleri Komisyonu

Proje Numarası

17YL013

Teşekkür

Bu çalışma, HMKÜ Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenmiş olan 17YL013 nolu proje kapsamında yapılmıştır.

Kaynakça

  • Anonymous (2022). Crops and livestock products. Statistical data of FAO (FAOSTAT). Retrieved from: https://www.fao.org/faostat/en/#data/QCL/visualize (Erişim Tarihi 25.02.2022).
  • Atay, M., Kara, M., Uysal, A., Soylu, S., Kurt, Ş., & Soylu, E. M. (2020). In vitro antifungal activities of endophytic bacterial isolates against postharvest heart rot disease agent Alternaria alternata in omegranate fruits. Acta Horticulturae, 1289, 309-314.
  • Banks, J.G., Board, R. G., & Sparks, N. H. C. (1986). Natural antimicrobial system and their potential in food preservation of the future. Biotechnology and Applied Biochemistry, 8, 103-107.
  • Blumenthal, C. Z. (2004). Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regulatory Toxicology and Pharmacology, 39(2): 214-228.
  • Chen, J., Mirocha, C. J., Xie, W., Hogge, L., & Olson, D. (1992). Production of the mycotoxin fumonisin B1 by Alternaria alternata f. sp. lycopersici. Applied and Environmental Microbiology, 58(12), 3928-3931.
  • Clifford, B. C., & Lester, E. (1988) Control of plant diseases: Costs and benefits. Oxford, UK, Blackwell.
  • de Melo Nazareth, T., Alonso-Garrido, M., Stanciu, O., Mañes, J., Manyes, L., & Meca, G. (2020). Effect of allyl isothiocyanate on transcriptional profile, aflatoxin synthesis and Aspergillus flavus growth. Food Research International, 128, 108786.
  • Delaquis, P. J., & Mazza, G. (1995). Antimicrobial properties of isothiocyanates in food preservation. Food Technology, 49, 73–84.
  • Dufour, V., Stahl, M., & Baysse, C. (2015). The antibacterial properties of isothiocyanates. Microbiology, 161(2), 229-243.
  • Dugan, F.M., 2006. The Identification of Fungi, An Illustrated Introduction With Keys Glossary and Guide to Literature. APS. Press, St. Paul. Minnesota, USA. pp. 176.
  • Duman, A. D. (2010). Storage of red pepper under hermetically sealed or vacuum conditions for preservation of its quality and prevention of mycotoxin occurrence. Journal of Stored Product Research, 46, 155–160.
  • Dwivedy, A. K., Kumar, M., Upadhyay, N., Prakash, B., & Dubey, N.K. (2016). Plant essential oils against food borne fungi and mycotoxins. Current Opinion in Food Science, 11, 16–21.
  • Ham, H., Kim, S., Kim, M-H., Lee, S., Hong, S.K., Ryu, J-G., & Lee, T. (2016). Mycobiota of ground red pepper and their aflatoxigenic potential. Journal of Microbiology, 54, 832–837.
  • Hontanaya, C., Meca, G., Luciano, F.B., Manes, J., & Font, G. (2015). Inhibition of aflatoxin B1, B2, G1 and G2 production by Aspergillus parasiticus in nuts using yellow and oriental mustard flours. Food Control, 47, 154-160.
  • Howard, L. R., Smith, R. T., Wagner, A. B., Villalon, B., & Burns, E. E. (1994). Provitamin A and ascorbic acid content of fresh pepper cultivars (Capsicum annuum) and processed jalapenos. Journal of Food Science, 59, 362-365.
  • Hussein, H. S., & Brasel, J. M. (2001). Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167(2), 101-134.
  • Kabak, B., & Dobson, A. D. W. (2017). Mycotoxins in spices and herbs-An update. Critical Reviews in Food Science and Nutrition, 57, 18-34.
  • Kara, M., & Soylu, E. M. (2020). Assessment of glucosinolate‐derived isothiocyanates as potential natural antifungal compounds against citrus sour rot disease agent Geotrichum citri‐aurantii. Journal of Phytopathology, 168(5), 279-289.
  • Kara, M., Türkmen, M., & Soylu, S. (2022). Rezene ve defne uçucu yağ karışımlarının kimyasal bileşenlerinin servi sürgün uç yanıklığı hastalık etmeni Pestalotiopsis funerea’ya karşı antifungal etkinliklerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25 (1), 113-126.
  • Kojima, M., & Oawa, K. (1971). Studies on the effect of isothiocyanates and their analogues on microorganisms. (I) Effects of isothiocyanates on the oxygen uptake of yeasts. Journal of Fermentation Technology, 49, 740–746.
  • Kurt, Ş., Güneş U., & Soylu, E.M. (2011). In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Management Science, 67, 869-875.
  • Lin, C., Preston, J., & Wei, C. (2000). Antibacterial mechanism of allyl-isothiocyanate. Journal of Food Protection, 63, 727–734.
  • Manyes, L., Luciano, F. B., Manes, J., & Meca, G. (2015). In vitro antifungal activity of allyl isothiocyanate (AITC) against Aspergillus parasiticus and Penicillium expansum and evaluation of the AITC estimated daily intake. Food and Chemical Toxicology, 83, 293–299.
  • Mari, M., Leoni, O., Bernardi, R., Neri, F., & Palmieri, S. (2008). Control of brown rot in stone fruits by synthetic and glucosinolates-derived isothiocyanates. Postharvest Biology and Technology, 47, 61–67.
  • Mari, M., Lori, R., Leoni, O., & Marchi, A. (1996) Bioassays of glucosinolates-derived isothyocyanate against postharvest pear pathogens. Plant Pathology, 45:753–760.
  • McKee, L. H. (1995). Microbial contamination of spices and herbs, a review. Lebensmittel-Wissenschaft und-Technologie, 28, 1-11.
  • Nazareth, T.M., Bordin, K., Manyes, L., Meca, G., Manes, J., & Luciano, F.B., (2016). Gaseous allyl isothiocyanate to inhibit the production of aflatoxins, beauvericin, and enniatins by Aspergillus parasiticus and Fusarium poae in wheat flour. Food Control, 62, 317-321.
  • Nazareth, T.M., Corrêa, J.A.F., Pinto, A.C.S.M., Palma, J.B., Meca, G., Bordin, K. & Luciano, F.B., (2018). Evaluation of gaseous allyl isothiocyanate against the growth of mycotoxigenic fungi and mycotoxin production in corn stored for 6 months. Journal Science Food Agriculture, 98, 5235-5241.
  • Okano, K., Ose, A., Takai, M., Kaneko, M., Nishioka, C., Ohzu, Y., & Ichinoe, M. (2015). Inhibition of aflatoxin production and fungal growth on stored corn by allyl isothiocyanate vapor. Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan, 56(1), 1-7.
  • Öksüztepe, G., & Erkan, S., (2016). Mycotoxins and their importance in terms of public health. Harran Üniversitesi Veteriner Fakültesi Dergisi, 5, 190-195.
  • Otoni, B. C. G., Soares, N. F. F., da Silva, W. A., Medeiros, E. A. A. & Junior, J. C. B. (2014). Use of allyl isothiocyanate-containing sachets to reduce Aspergillus flavus sporulation in peanuts. Packaging Technology and Science, 27, 549–558.
  • Prakash, B., Shukla, R., Singh, P., Mishra, P. K., Dubey, N. K., & Kharwar, R. N. (2011). Efficacy of chemically characterized Ocimum gratissimum L. essential oil as an antioxidant and a safe plant based antimicrobial against fungal and aflatoxin B1 contamination of spices. Food Research International, 44(1), 385-390.
  • Quiles, J. M., Manyes, L., Luciano, F., Manes, J., & Meca, G. (2015). Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust. Food and Chemical Toxicology, 83, 222-228.
  • Reddy, K. R. N., Salleh, B., Saad, B., Abbas, H. K, Abel, C. A., & Shier, W.T. (2010). An overview of mycotoxin contamination in foods and its implications for human health. Toxin Reviews, 29, 3-26.
  • Rheeder, J. P., Marasas, W. F., & Vismer, H. F. (2002). Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology, 68(5), 2101-2105.
  • Şahin, B., Soylu, S., Kara, M., Türkmen, M., Aydin, R., & Çetin, H. (2021). Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceramics International, 47, 341-350.
  • Shukla, R., Kumar, A., Singh, P., & Dubey, N. K. (2009). Efficacy of Lippia alba (Mill.) NE Brown essential oil and its monoterpene aldehyde constituents against fungi isolated from some edible legume seeds and aflatoxin B1 production. International Journal of Food Microbiology, 135(2), 165-170.
  • Simonne, A. H., Simonne, E. H., Eitenmiller, R. R., Mills, H. A., & Green, N. R. (1997). Ascorbic acid and provitamin a contents in unusually colored bell peppers (Capsicum annuumL.). Journal of Food Composition and Analysis, 10, 299-311.
  • Smith, J. E. (2001). Mycotoxins, In, Food Chemical Safety, Watson, D.H., (Ed.), CRC Press, pp.234-255.
  • Soliman, K. M., & Badeaa, R. I. (2002). Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food and Chemical Toxicology, 40, 1669–1675.
  • Soylu, E.M., Kurt, Ş., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143, 183-189.
  • Soylu, E.M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 7-18.
  • Soylu, S., Kara, M., Soylu, E. M., Uysal, A., & Kurt, Ş. (2022). Geotrichum citri-aurantii’nin sebep olduğu turunçgil ekşi çürüklük hastalığının biyolojik mücadelesinde endofit bakterilerin biyokontrol potansiyellerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19(1), 177-191.
  • Tracz, B. L., Bordin, K., de Melo Nazareth, T., Costa, L. B., de Macedo, R. E. F., Meca, G., & Luciano, F. B. (2017). Assessment of allyl isothiocyanate as a fumigant to avoid mycotoxin production during corn storage. LWT, 75, 692-696.
  • Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest biology and Technology, 32(3), 235-245.
  • Troncoso-Rojas, R., Corral-Acosta, Y., Sánchez-Estrada, A., García-Estrada, R., Aguilar-Valenzuela, A., Ojeda-Contreras, J., & Tiznado-Hernández, M. E. (2009). Postharvest treatment of isothiocyanates to control Alternaria rot in netted melon. Phytoparasitica, 37(5), 445.
  • Troncoso-Rojas, R., Espinoza, C., Sánchez-Estrada, A., Tiznado, M.E., & García, H.S., (2005). Analysis of the isothiocyanates present in cabbage leaves extract and their potential application to control Alternaria rot in bell peppers. Food Res. Intern. 38, 701–708.
  • Türkmen, M., Kara, M., Maral, H., & Soylu, S. (2022). Determination of chemical component of essential oil of Origanum dubium plants grown at different altitudes and antifungal activity against Sclerotinia sclerotiorum. Journal of Food Processing and Preservation, 46, e15787
  • Ugolini, L., Martini, C., Lazzeri, L., D’Avino, L., & Mari, M. (2014). Control of postharvest grey mould (Botrytis cinerea Per.: Fr.) on strawberries by glucosinolatederived allyl-isothiocyanate treatments. Postharvest Biology and Technology, 90, 34–39.
  • Uylaşer, V., Karaman, B., & Kazancı, Y.T. (2005). Mikotoksinler ve insan sağlığına etkileri. Hasad, 21, 43-48.
  • Weidenbörner, M. (2014). Mycotoxins in Foodstuffs. Springer Science & Business Media, 739 pp.
  • Wien, H. C. (1997). The physiology of vegetable crops (No. 581.1 635). CAB International.
  • Wu, H., Zhang, G.A., Zeng, S.Y., & Lin, K.C. (2011). Antifungal vapour-phase activity of a combination of allylisothiocyanate and ethyl isothiocyanates against Botrytis cinerea and Penicillium expansum on apples. Journal of Phytopathology, 159, 450–455.
  • Yiannikouris, A. & Jouany, J. P. (2002). Mycotoxins in feeds and their fate in animals, A review. Animal Research, 51, 81-99.

Determination of the antifungal effects of Isothiocyanate compounds against some fungal disease agents that cause postharvest rot in pepper fruits

Yıl 2022, Cilt: 26 Sayı: 3, 290 - 302, 23.09.2022
https://doi.org/10.29050/harranziraat.1136632

Öz

Fungal disease agents, which are the problem in stored products, are one of the important factors limiting the quality of post-harvest products. Dried peppers are very often infected by fungal pathogens that produce mycotoxins. Aspergillus niger, Alternaria alternata and Fusarium incarnatum are important fungal agents that can produce potential mycotoxins that cause disease in many plants in the pre- and post-harvest periods. The isothiocyanates (ITCs), produced by Brassica spp. and having broad antimicrobial activity, are allelochemical compounds with antimicrobial activities associated with the biologically active degradation products of glucosinolates. In this study, the in vitro antifungal effects of different isothiocyanate compounds such as methyl isothiocyanate (MITC), 2-propenyl (Allyl) isothiocyanate (AITC), benzyl isothiocyanate (BITC) and ethyl isothiocyanate (EITC) were investigated against Aspergillus niger, Alternaria alternata and Fusarium incarnatum isolates. Based on the minimum inhibition concentrations (MIC) that completely inhibit mycelial growth, the highest antifungal activity was displayed by MITC against Fusarium incarnatum, Aspergillus niger and Alternaria alternata at 0.06, 0.09 and 0.09 μl petri-1 concentrations, respectively. The lowest antifungal activities were shown by EITC against A. niger and F. incarnatum at 0.15 and 0.21 μl petri-1, and by AITC and BITC against A. alternata at the concentration of 0.21 μl petri-1. In addition, It has been determined that ITCs compounds generally have fungicidal effects at MIC values. The results showed that isothiocyanates, which have antifungal activity at very low concentrations, have the potential to be applied as a fumigant against fungal agents that cause spoilage in stored agricultural products.

Proje Numarası

17YL013

Kaynakça

  • Anonymous (2022). Crops and livestock products. Statistical data of FAO (FAOSTAT). Retrieved from: https://www.fao.org/faostat/en/#data/QCL/visualize (Erişim Tarihi 25.02.2022).
  • Atay, M., Kara, M., Uysal, A., Soylu, S., Kurt, Ş., & Soylu, E. M. (2020). In vitro antifungal activities of endophytic bacterial isolates against postharvest heart rot disease agent Alternaria alternata in omegranate fruits. Acta Horticulturae, 1289, 309-314.
  • Banks, J.G., Board, R. G., & Sparks, N. H. C. (1986). Natural antimicrobial system and their potential in food preservation of the future. Biotechnology and Applied Biochemistry, 8, 103-107.
  • Blumenthal, C. Z. (2004). Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regulatory Toxicology and Pharmacology, 39(2): 214-228.
  • Chen, J., Mirocha, C. J., Xie, W., Hogge, L., & Olson, D. (1992). Production of the mycotoxin fumonisin B1 by Alternaria alternata f. sp. lycopersici. Applied and Environmental Microbiology, 58(12), 3928-3931.
  • Clifford, B. C., & Lester, E. (1988) Control of plant diseases: Costs and benefits. Oxford, UK, Blackwell.
  • de Melo Nazareth, T., Alonso-Garrido, M., Stanciu, O., Mañes, J., Manyes, L., & Meca, G. (2020). Effect of allyl isothiocyanate on transcriptional profile, aflatoxin synthesis and Aspergillus flavus growth. Food Research International, 128, 108786.
  • Delaquis, P. J., & Mazza, G. (1995). Antimicrobial properties of isothiocyanates in food preservation. Food Technology, 49, 73–84.
  • Dufour, V., Stahl, M., & Baysse, C. (2015). The antibacterial properties of isothiocyanates. Microbiology, 161(2), 229-243.
  • Dugan, F.M., 2006. The Identification of Fungi, An Illustrated Introduction With Keys Glossary and Guide to Literature. APS. Press, St. Paul. Minnesota, USA. pp. 176.
  • Duman, A. D. (2010). Storage of red pepper under hermetically sealed or vacuum conditions for preservation of its quality and prevention of mycotoxin occurrence. Journal of Stored Product Research, 46, 155–160.
  • Dwivedy, A. K., Kumar, M., Upadhyay, N., Prakash, B., & Dubey, N.K. (2016). Plant essential oils against food borne fungi and mycotoxins. Current Opinion in Food Science, 11, 16–21.
  • Ham, H., Kim, S., Kim, M-H., Lee, S., Hong, S.K., Ryu, J-G., & Lee, T. (2016). Mycobiota of ground red pepper and their aflatoxigenic potential. Journal of Microbiology, 54, 832–837.
  • Hontanaya, C., Meca, G., Luciano, F.B., Manes, J., & Font, G. (2015). Inhibition of aflatoxin B1, B2, G1 and G2 production by Aspergillus parasiticus in nuts using yellow and oriental mustard flours. Food Control, 47, 154-160.
  • Howard, L. R., Smith, R. T., Wagner, A. B., Villalon, B., & Burns, E. E. (1994). Provitamin A and ascorbic acid content of fresh pepper cultivars (Capsicum annuum) and processed jalapenos. Journal of Food Science, 59, 362-365.
  • Hussein, H. S., & Brasel, J. M. (2001). Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167(2), 101-134.
  • Kabak, B., & Dobson, A. D. W. (2017). Mycotoxins in spices and herbs-An update. Critical Reviews in Food Science and Nutrition, 57, 18-34.
  • Kara, M., & Soylu, E. M. (2020). Assessment of glucosinolate‐derived isothiocyanates as potential natural antifungal compounds against citrus sour rot disease agent Geotrichum citri‐aurantii. Journal of Phytopathology, 168(5), 279-289.
  • Kara, M., Türkmen, M., & Soylu, S. (2022). Rezene ve defne uçucu yağ karışımlarının kimyasal bileşenlerinin servi sürgün uç yanıklığı hastalık etmeni Pestalotiopsis funerea’ya karşı antifungal etkinliklerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25 (1), 113-126.
  • Kojima, M., & Oawa, K. (1971). Studies on the effect of isothiocyanates and their analogues on microorganisms. (I) Effects of isothiocyanates on the oxygen uptake of yeasts. Journal of Fermentation Technology, 49, 740–746.
  • Kurt, Ş., Güneş U., & Soylu, E.M. (2011). In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Management Science, 67, 869-875.
  • Lin, C., Preston, J., & Wei, C. (2000). Antibacterial mechanism of allyl-isothiocyanate. Journal of Food Protection, 63, 727–734.
  • Manyes, L., Luciano, F. B., Manes, J., & Meca, G. (2015). In vitro antifungal activity of allyl isothiocyanate (AITC) against Aspergillus parasiticus and Penicillium expansum and evaluation of the AITC estimated daily intake. Food and Chemical Toxicology, 83, 293–299.
  • Mari, M., Leoni, O., Bernardi, R., Neri, F., & Palmieri, S. (2008). Control of brown rot in stone fruits by synthetic and glucosinolates-derived isothiocyanates. Postharvest Biology and Technology, 47, 61–67.
  • Mari, M., Lori, R., Leoni, O., & Marchi, A. (1996) Bioassays of glucosinolates-derived isothyocyanate against postharvest pear pathogens. Plant Pathology, 45:753–760.
  • McKee, L. H. (1995). Microbial contamination of spices and herbs, a review. Lebensmittel-Wissenschaft und-Technologie, 28, 1-11.
  • Nazareth, T.M., Bordin, K., Manyes, L., Meca, G., Manes, J., & Luciano, F.B., (2016). Gaseous allyl isothiocyanate to inhibit the production of aflatoxins, beauvericin, and enniatins by Aspergillus parasiticus and Fusarium poae in wheat flour. Food Control, 62, 317-321.
  • Nazareth, T.M., Corrêa, J.A.F., Pinto, A.C.S.M., Palma, J.B., Meca, G., Bordin, K. & Luciano, F.B., (2018). Evaluation of gaseous allyl isothiocyanate against the growth of mycotoxigenic fungi and mycotoxin production in corn stored for 6 months. Journal Science Food Agriculture, 98, 5235-5241.
  • Okano, K., Ose, A., Takai, M., Kaneko, M., Nishioka, C., Ohzu, Y., & Ichinoe, M. (2015). Inhibition of aflatoxin production and fungal growth on stored corn by allyl isothiocyanate vapor. Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan, 56(1), 1-7.
  • Öksüztepe, G., & Erkan, S., (2016). Mycotoxins and their importance in terms of public health. Harran Üniversitesi Veteriner Fakültesi Dergisi, 5, 190-195.
  • Otoni, B. C. G., Soares, N. F. F., da Silva, W. A., Medeiros, E. A. A. & Junior, J. C. B. (2014). Use of allyl isothiocyanate-containing sachets to reduce Aspergillus flavus sporulation in peanuts. Packaging Technology and Science, 27, 549–558.
  • Prakash, B., Shukla, R., Singh, P., Mishra, P. K., Dubey, N. K., & Kharwar, R. N. (2011). Efficacy of chemically characterized Ocimum gratissimum L. essential oil as an antioxidant and a safe plant based antimicrobial against fungal and aflatoxin B1 contamination of spices. Food Research International, 44(1), 385-390.
  • Quiles, J. M., Manyes, L., Luciano, F., Manes, J., & Meca, G. (2015). Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust. Food and Chemical Toxicology, 83, 222-228.
  • Reddy, K. R. N., Salleh, B., Saad, B., Abbas, H. K, Abel, C. A., & Shier, W.T. (2010). An overview of mycotoxin contamination in foods and its implications for human health. Toxin Reviews, 29, 3-26.
  • Rheeder, J. P., Marasas, W. F., & Vismer, H. F. (2002). Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology, 68(5), 2101-2105.
  • Şahin, B., Soylu, S., Kara, M., Türkmen, M., Aydin, R., & Çetin, H. (2021). Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceramics International, 47, 341-350.
  • Shukla, R., Kumar, A., Singh, P., & Dubey, N. K. (2009). Efficacy of Lippia alba (Mill.) NE Brown essential oil and its monoterpene aldehyde constituents against fungi isolated from some edible legume seeds and aflatoxin B1 production. International Journal of Food Microbiology, 135(2), 165-170.
  • Simonne, A. H., Simonne, E. H., Eitenmiller, R. R., Mills, H. A., & Green, N. R. (1997). Ascorbic acid and provitamin a contents in unusually colored bell peppers (Capsicum annuumL.). Journal of Food Composition and Analysis, 10, 299-311.
  • Smith, J. E. (2001). Mycotoxins, In, Food Chemical Safety, Watson, D.H., (Ed.), CRC Press, pp.234-255.
  • Soliman, K. M., & Badeaa, R. I. (2002). Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food and Chemical Toxicology, 40, 1669–1675.
  • Soylu, E.M., Kurt, Ş., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143, 183-189.
  • Soylu, E.M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 7-18.
  • Soylu, S., Kara, M., Soylu, E. M., Uysal, A., & Kurt, Ş. (2022). Geotrichum citri-aurantii’nin sebep olduğu turunçgil ekşi çürüklük hastalığının biyolojik mücadelesinde endofit bakterilerin biyokontrol potansiyellerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19(1), 177-191.
  • Tracz, B. L., Bordin, K., de Melo Nazareth, T., Costa, L. B., de Macedo, R. E. F., Meca, G., & Luciano, F. B. (2017). Assessment of allyl isothiocyanate as a fumigant to avoid mycotoxin production during corn storage. LWT, 75, 692-696.
  • Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest biology and Technology, 32(3), 235-245.
  • Troncoso-Rojas, R., Corral-Acosta, Y., Sánchez-Estrada, A., García-Estrada, R., Aguilar-Valenzuela, A., Ojeda-Contreras, J., & Tiznado-Hernández, M. E. (2009). Postharvest treatment of isothiocyanates to control Alternaria rot in netted melon. Phytoparasitica, 37(5), 445.
  • Troncoso-Rojas, R., Espinoza, C., Sánchez-Estrada, A., Tiznado, M.E., & García, H.S., (2005). Analysis of the isothiocyanates present in cabbage leaves extract and their potential application to control Alternaria rot in bell peppers. Food Res. Intern. 38, 701–708.
  • Türkmen, M., Kara, M., Maral, H., & Soylu, S. (2022). Determination of chemical component of essential oil of Origanum dubium plants grown at different altitudes and antifungal activity against Sclerotinia sclerotiorum. Journal of Food Processing and Preservation, 46, e15787
  • Ugolini, L., Martini, C., Lazzeri, L., D’Avino, L., & Mari, M. (2014). Control of postharvest grey mould (Botrytis cinerea Per.: Fr.) on strawberries by glucosinolatederived allyl-isothiocyanate treatments. Postharvest Biology and Technology, 90, 34–39.
  • Uylaşer, V., Karaman, B., & Kazancı, Y.T. (2005). Mikotoksinler ve insan sağlığına etkileri. Hasad, 21, 43-48.
  • Weidenbörner, M. (2014). Mycotoxins in Foodstuffs. Springer Science & Business Media, 739 pp.
  • Wien, H. C. (1997). The physiology of vegetable crops (No. 581.1 635). CAB International.
  • Wu, H., Zhang, G.A., Zeng, S.Y., & Lin, K.C. (2011). Antifungal vapour-phase activity of a combination of allylisothiocyanate and ethyl isothiocyanates against Botrytis cinerea and Penicillium expansum on apples. Journal of Phytopathology, 159, 450–455.
  • Yiannikouris, A. & Jouany, J. P. (2002). Mycotoxins in feeds and their fate in animals, A review. Animal Research, 51, 81-99.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Mehmet Atay 0000-0001-5751-4764

Soner Soylu 0000-0003-1002-8958

Proje Numarası 17YL013
Yayımlanma Tarihi 23 Eylül 2022
Gönderilme Tarihi 27 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 3

Kaynak Göster

APA Atay, M., & Soylu, S. (2022). Biber meyvelerinde hasat sonrası çürümelere sebep olan bazı fungal hastalık etmenlerine karşı Isothiocyanate bileşiklerinin antifungal etkilerinin belirlenmesi. Harran Tarım Ve Gıda Bilimleri Dergisi, 26(3), 290-302. https://doi.org/10.29050/harranziraat.1136632

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.