Araştırma Makalesi
BibTex RIS Kaynak Göster

Etiyopya’da gıda güvencesi için teff üretiminin su ayak izi analizi ile değerlendirilmesi

Yıl 2025, Cilt: 29 Sayı: 1, 49 - 64
https://doi.org/10.29050/harranziraat.1578338

Öz

Afrika'da 2030 yılına kadar Sürdürülebilir Kalkınma Hedefleri (SDG) arasında yer alan SDG 2: Sıfır Açlık hedefine yaklaşmak için, tarımsal uygulamalar ve su mevcudiyeti gibi çeşitli faktörlerle ilgili olarak gıda güvencesi sorunlarının yeniden gözden geçirilmesi gerekmektedir. Teff ürünü Etiyopya’da önemli bir yere sahiptir, ancak yağışa dayalı yetiştiricilik uygulamaları nedeniyle verim düşüktür. Su ayak izi (WF) kavramı, ürünlerin yağışa bağımlılığı hakkında yararlı bir bakış açısı sağlayarak sulama ihtiyacını ortaya koyar. Bu nedenle, teff üretiminin WF analizi, çiftçilerin verimi artırmasına ve su verimliliğini korumasına yardımcı olabilir. Bu çalışmada, Etiyopya'daki teff üretiminin yeşil ve mavi su ayak izleri, CROPWAT 8.0 ve CLIMWAT 2.0 modelleri kullanılarak 2019/2020 sezonu için tahmin edilmiştir. Sonuçlar, yeşil su ayak izi (WFgreen)'nin Tigray bölgesinde 1170 m3 ton-1, SNNPR bölgesinde ise 1481 m3 ton-1 değeriyle baskın olduğunu göstermektedir. Öte yandan, mavi su ayak izi (WFblue), Amhara'da 264 m3 ton-1 ile Tigray'da 1022 m3 ton-1 arasında önemli ölçüde değişmektedir. Bu sonuç, bitki su ihtiyacının etkili yağıştan çok daha yüksek olması nedeniyle sulama ihtiyacını göstermektedir. Teff'in ekonomik su verimliliği, mısır gibi diğer ürünlerden daha yüksek olarak 0,68 USD m-3 olarak bulunmuştur. İklim değişikliğinin ve kuraklığın potansiyel etkisi göz önüne alındığında, bu çalışma teff üretimine su tahsisini artırmayı ve ulusal düzeyde uygun sulama uygulamalarının gerçekleştirilmesini önermektedir. Su ayak izi analizini nehir havzası düzeyindeki su tahsis planlarına entegre etmek, sürdürülebilir su kaynakları yönetimi ve gıda güvencesi için faydalı olacaktır.

Kaynakça

  • Agriorbit (2023). Ancient origins to trendy foodstuff: https://agriorbit.com/teff-from-ancient-origins-to-trendyfoodstuff/#:~:text=TGSA%20is%20the%20company% 20reponsible,12%20000%20to%2016%20000ha (accessed 16 august 2023).
  • Aldaya, M. M. & Llamas, M. (2008). Water footprint analysis for the Guadiana river basin. Madrid: ISBN: 978-84-96655-26-3.
  • Allen, R., Pereira, L., Raes, D. & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO Rome, Italy. http://www.fao.org/docrep/x0490e/x0490e00.htm
  • Andreotti, F., Bazile, D., Biaggi, C., Callo-Concha, D., Jacquet, J., Jemal, O., Speelman, EN & van Noordwijk, M (2022). When neglected species gain global interest: Lessons learned from quinoa's boom and bust for teff and minor millet. Global Food Security, 32, Article 100613. https://doi.org/10.1016/j.gfs.2022.100613.
  • Araya, A., Stroosnijder, L., Gebresamuel, G. & Keesstra, S. (2011). Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (ZUCC.). Agricultural Water Management, 775-787, DOI:10.1016/j.agwat.2010.12.001
  • AU (2023). Food Security. Retrieved from African Union, https://au.int/en/auc/priorities/food-security: https://au.int/en/auc/priorities/food-security (accessed 16 august 2023).
  • Bizuwork, T. D. & Yibekal, A. (2020). Optimizing blended (NPSB) and N fertilizer rates for the productivity of Durum wheat (Triticum turgidum L.var. durum) in Central Highlands of Ethiopia. Cogent Food & Agriculture 6:1, https://doi.org/10.1080/23311932.2020.1766733.
  • Biovision, I. (2022, july 12). Retrieved from Teff: infonet biovision 2022 https://infonet-biovision.org/PlantHealth/Crops/teff (accessed 15 august 2023).
  • Chapagain, A. K., Hoekstra, A. Y., Savenije, H. H. G., & Gautam, R. (2006). The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics, 60(1), 186–203. https://doi.org/10.1016/j.ecolecon.2005.11.027
  • Chapagain, A. & Hoekstra, A. (2010). The blue, green and grey water footprint of rice from both a production and consumption perspective. Re-Thinking Water and Food Security, 219–250. https://doi.org/10.1201/b10541-17
  • CSA (2020). Area and Production of Major Crops. Central Statistical Agency: Addis Ababa. http://www.statsethiopia.gov.et/wp-content/uploads/2021/05/2013-MEHER-REPORT.FINAl (accessed 13 august 2022.
  • CSA (2020). Farm Management Practices (Private peasant holdings, meher season). Central Statistical Agency: Addis Abeba. http://www.statsethiopia.gov.et/agriculture/farm-management-practices-private-peasant-holdings-meher-season-2022-222014-e-c/ (accessed 13 august 2022)
  • Daria, N. (2017). Water Scarcity Indexes: Water Availability to Satisfy Human. https://core.ac.uk/download/pdf/84797448.pdf (accessed 11 July 2022).
  • Desta, F. Y., Bisa, M. E., Tegenu, G., Haile, A. & Kassa, G. (2018). Estimation of crop water requirement and seasonal irrigation water demand for Eragrostis Tef: model-based analysis. Technological Interventions in Management of Irrigated Agriculture, 19–28. https://doi.org/10.1201/9781315204307-2
  • Tadele, E. & Hibistu, T. (2022). Spatial production distribution, economic viability and value chain features of teff in Ethiopia: Systematic review. Cogent Economics & Finance, 10 DOI: 10.1080/23322039.2021.2020484.
  • Fandika, I. R., D. Kemp, P., P. Millner, J. & Horne, D. (2019). Water footprint Differences of producing cultivars of selected crops in New Zealand. Irrigation in Agroecosystems. https://doi.org/10.5772/intechopen.77509
  • FAO (2021). Food and Agriculture Organization of United Nations. Tracking Water to Make the Most of It: https://www.fao.org.
  • FAO (2022). Food and Agriculture Organization of United Nations. https://www.fao.org.(accessed 22 april 2022
  • FAO. (2023, August 16). Teff: https://www.fao.org/traditional-crops/teff/en/. (accessed 16 august 2023)
  • FSIN (2020). Global report on food crises. Joint analysis for better decisions. Food Security Information Platform, Food Secur. Inf. Netw., 1-202.
  • ttp://https://www.fsinplatform.org/sites/default/files/resources/files/GRFC2020_September%20Update.pdf (accessed 3 July 2022).
  • Hirpa, B. A., Adane, G. B., Asrat, A. & Nedaw, D. (2022). Spatio-temporal variability and trend of water footprints in the upper Awash basin, Central Ethiopia. Journal of Hydrology, 608, Article 127686. https://doi.org/10.1016/j.jhydrol.2022.127686.
  • Hoekstra, A.Y. & Hung, P. (2002). Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. In: Proceedings of the International Expert Meeting on Virtual Water Trade. Value of Water Research Report Series No. 12, IHE, Delft, the Netherlands.
  • Hoekstra, A., Chapagain, A., Aldaya, M. & Mekonnen, M. (2011). The Water Footprint Assessment Manual: Setting the Global Standard. Daugherty Water for Food Global Institute: Faculty Publications. 77. https://digitalcommons.unl.edu/wffdocs/77(accessed 5 march 2022)
  • ISO (2014). Environmental Management -Water Footprint. Principles, Requirements and Guidelines. International Organization for Standardization. https://doi.org/10.3403/30250082u
  • Jaleta, M. E. (2021). Agricultural supply chain analysis during supply chain disruptions: Case of teff commodity supply chain in Ethiopia in the era of COVID-19. Sustainable Agriculture Research, 10(3), 63. ISSN 1927-050X, https://doi.org/10.5539/sar.v10n3p63.
  • Lovarelli, D., Bacenetti, J., Fiala, M. & Hilemicael, K. (2017). Water productivity of teff under semi-arid climates. Journal of Environment and Earth Science, 7, 116-123.
  • (2016). Water footprint of crop productions: A review. Science of The Total Environment, 548–549, 236–251. https://doi.org/10.1016/j.scitotenv.2016.01.022.
  • Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600. https://doi.org/10.5194/hess-15-1577-2011Value of Water Research Report Series No. 47 U the Netherlands: NESCO-IHE, Delft.
  • Minten, B., Taffesse, A. & Brown, P. (2018). Economics of teff: exploring Ethiopia's biggest cash crop. ARGIS, https://doi.org/10.2499/9780896292833.
  • Moges, D. (2020). Technical efficiency of smallholder teff producing farmers in Ethiopia. Journal of Business and Economic Management 9(6), 218-228, https://doi.org/10.15413/jbem.2020.0170.
  • Rosenberg, R., Norberg, S., Smith, J., Charlton, B., Rykbost, K. & Shock, C. (2005). Yield and quality of teff forage as the function of varying fertilizer and irrigation. Klamath basin: https://www.researchgate.net/profile/BrianCharlton/publication/266467883_Yield_and_Quality_of_Teff_Forage_as_a_Function_of_Varying_Rates_of_Applied_Irrigation_and_Nitrogen/links/55f07b2e08aef559dc46d0de/Yield-and-Quality-of-Teff-Forage-as-a-Function-of-V.
  • Swennenhuis, J. (2009). CROPWAT Version 8.0 model. FAO, Vialedelle Terme di Caracalla 00100. Rome, Italy.http://www.fao.org/nr/ water/infores_databases_cropwat.html.: FAO (accessed 8 march 2022).
  • Tadele, E., & Tewelde, A. G. (2019). Evaluating the economic water productivity under full and deficit irrigation; the case of sesame crop (Sesumum indicum L.) in Woreda Kafta-Humera,Tigrai-Ethiopia. Water Science, 75-83, https://doi.org/ 10.1080/11104929.2019.1617481.
  • Tuyishimire, A., Liu, Y., Yin, J., Kou, L., Lin, S., Lin, J., Kubwimana, J. J., Moharrami, K. & Habimana Simbi, C. (2022). Drivers of the increasing water footprint in Africa: The food consumption perspective, Science of the Total Environment, 809, Article 152196. https://doi.org/10.1016/j.scitotenv.2021.152196.
  • Steduto, P., Hsiao, T. C., Fereres, E., Raes, D. (2012). Crop Yield Response to Water. Irrigation and Drainage Paper 66, United Nations FAO, Rome. http://www.fao.org/docrep/016/i2800e/i2800e00.htm.
  • USAID (2015). A Climate Trend Analysis of Ethiopia. https://www.usaid.gov/sites/default/files/documents/1860/A%2 0Climate%20Trend%20Analysis%20of%20Ethiopia.pdf: Rolla Publishing (accessed 07 august 2022).
  • World Bank (2023). Putting Africans at the Heart of Food Security and Climate Resilience. https://www.worldbank.org/en/news/immersive-story/2022/10/17/putting-africans-at-the-heart-of-food-security-and-climate-(resilience#:~:text=At%20least%20one%20in%20five,Crises%202022%20Mid%2DYear%20Update.(accessed 16 august 2023).
  • WWF (2023). Water in Africa. https://wwfeu.awsassets.panda.org/downloads/waterinafricaeng.pdf
  • World Bank (2017). The World Bank Data of Ethiopia’s Renewable Freshwater Water Resource per Capita. https://data.worldbank.org/indicator/ER.H2O.FWTL.ZS?locations=ET (Accessed 16 August 2023).
  • WFN (2016). Country Water Footprint Profile. www.waterfootprintnetwork.org: WFN ( accessed 21 August 2022).
  • Yihun, Y. M. (2015). Agricultural Water Productivity Optimization for irrigated Teff (Eragrostic Tef) in a Water Scarce Semi-arid Region of Ethiopia. Netherlands: CRC Press.
  • Yumba, J., Bij De Vaate, M. D., Kiambi, D. & Kebebew, F. (2014). Geographic information systems for assessment of climate change effects on teff in Ethiopia. African Crop Science Journal, 22, 847 - 858.

Evaluation of teff production in Ethiopia using water footprint analysis for food security

Yıl 2025, Cilt: 29 Sayı: 1, 49 - 64
https://doi.org/10.29050/harranziraat.1578338

Öz

Achieving Sustainable Development goal (SDG)2; Zero Hunger by 2030 in Africa requires reconsidering the challenges of food security in relation to several factors including agricultural practices and water availability. Teff crop plays a significant role in Ethiopia but the yield is low due to rain-fed production practices. The water footprint (WF) concept provides a useful perspective on the dependency of crops on precipitation, revealing the need for irrigation. So, WF analysis of teff production can help farmers to increase the yield and maintain water efficiency. In this study, the green and blue water footprints of teff production in Ethiopia were estimated for 2019/2020 season using the CROPWAT 8.0 and CLIMWAT 2.0 models. The results show that WFgreen is dominant with a value of 1170 m3 ton-1 in Tigray region to 1481 m3 ton-1 in SNNPR region. On the other hand, the WFblue varied significantly from 264 m3 ton-1 in Amhara to 1022 m3 ton-1 in Tigray, respectively, indicating the need for irrigation since water requirement is much higher than the effective precipitation. The economic water productivity of teff was found to be 0.68 USD m-3, which is higher than other crops such as maize. Given the potential impact of climate change and droughts, this study suggests increasing water allocation to teff production and implementing appropriate irrigation practices at a national level. Integrating water footprint analysis into river basin-level water allocation plans would be beneficial for sustainable water resource management and food security.

Etik Beyan

There is no requirement for ethical statement.

Destekleyen Kurum

Turkish Ministry of Culture and Tourism, Presidency of Turks Abroad and Related Communities.

Teşekkür

The authors gratefully acknowledge the Turkish Ministry of Culture and Tourism, Presidency of Turks Abroad and Related Communities for the scholarship provided to the graduate student Meka Taher Yimam to carry out this study as a master of thesis in Ankara University, Turkiye during 2020-2022.

Kaynakça

  • Agriorbit (2023). Ancient origins to trendy foodstuff: https://agriorbit.com/teff-from-ancient-origins-to-trendyfoodstuff/#:~:text=TGSA%20is%20the%20company% 20reponsible,12%20000%20to%2016%20000ha (accessed 16 august 2023).
  • Aldaya, M. M. & Llamas, M. (2008). Water footprint analysis for the Guadiana river basin. Madrid: ISBN: 978-84-96655-26-3.
  • Allen, R., Pereira, L., Raes, D. & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO Rome, Italy. http://www.fao.org/docrep/x0490e/x0490e00.htm
  • Andreotti, F., Bazile, D., Biaggi, C., Callo-Concha, D., Jacquet, J., Jemal, O., Speelman, EN & van Noordwijk, M (2022). When neglected species gain global interest: Lessons learned from quinoa's boom and bust for teff and minor millet. Global Food Security, 32, Article 100613. https://doi.org/10.1016/j.gfs.2022.100613.
  • Araya, A., Stroosnijder, L., Gebresamuel, G. & Keesstra, S. (2011). Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (ZUCC.). Agricultural Water Management, 775-787, DOI:10.1016/j.agwat.2010.12.001
  • AU (2023). Food Security. Retrieved from African Union, https://au.int/en/auc/priorities/food-security: https://au.int/en/auc/priorities/food-security (accessed 16 august 2023).
  • Bizuwork, T. D. & Yibekal, A. (2020). Optimizing blended (NPSB) and N fertilizer rates for the productivity of Durum wheat (Triticum turgidum L.var. durum) in Central Highlands of Ethiopia. Cogent Food & Agriculture 6:1, https://doi.org/10.1080/23311932.2020.1766733.
  • Biovision, I. (2022, july 12). Retrieved from Teff: infonet biovision 2022 https://infonet-biovision.org/PlantHealth/Crops/teff (accessed 15 august 2023).
  • Chapagain, A. K., Hoekstra, A. Y., Savenije, H. H. G., & Gautam, R. (2006). The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics, 60(1), 186–203. https://doi.org/10.1016/j.ecolecon.2005.11.027
  • Chapagain, A. & Hoekstra, A. (2010). The blue, green and grey water footprint of rice from both a production and consumption perspective. Re-Thinking Water and Food Security, 219–250. https://doi.org/10.1201/b10541-17
  • CSA (2020). Area and Production of Major Crops. Central Statistical Agency: Addis Ababa. http://www.statsethiopia.gov.et/wp-content/uploads/2021/05/2013-MEHER-REPORT.FINAl (accessed 13 august 2022.
  • CSA (2020). Farm Management Practices (Private peasant holdings, meher season). Central Statistical Agency: Addis Abeba. http://www.statsethiopia.gov.et/agriculture/farm-management-practices-private-peasant-holdings-meher-season-2022-222014-e-c/ (accessed 13 august 2022)
  • Daria, N. (2017). Water Scarcity Indexes: Water Availability to Satisfy Human. https://core.ac.uk/download/pdf/84797448.pdf (accessed 11 July 2022).
  • Desta, F. Y., Bisa, M. E., Tegenu, G., Haile, A. & Kassa, G. (2018). Estimation of crop water requirement and seasonal irrigation water demand for Eragrostis Tef: model-based analysis. Technological Interventions in Management of Irrigated Agriculture, 19–28. https://doi.org/10.1201/9781315204307-2
  • Tadele, E. & Hibistu, T. (2022). Spatial production distribution, economic viability and value chain features of teff in Ethiopia: Systematic review. Cogent Economics & Finance, 10 DOI: 10.1080/23322039.2021.2020484.
  • Fandika, I. R., D. Kemp, P., P. Millner, J. & Horne, D. (2019). Water footprint Differences of producing cultivars of selected crops in New Zealand. Irrigation in Agroecosystems. https://doi.org/10.5772/intechopen.77509
  • FAO (2021). Food and Agriculture Organization of United Nations. Tracking Water to Make the Most of It: https://www.fao.org.
  • FAO (2022). Food and Agriculture Organization of United Nations. https://www.fao.org.(accessed 22 april 2022
  • FAO. (2023, August 16). Teff: https://www.fao.org/traditional-crops/teff/en/. (accessed 16 august 2023)
  • FSIN (2020). Global report on food crises. Joint analysis for better decisions. Food Security Information Platform, Food Secur. Inf. Netw., 1-202.
  • ttp://https://www.fsinplatform.org/sites/default/files/resources/files/GRFC2020_September%20Update.pdf (accessed 3 July 2022).
  • Hirpa, B. A., Adane, G. B., Asrat, A. & Nedaw, D. (2022). Spatio-temporal variability and trend of water footprints in the upper Awash basin, Central Ethiopia. Journal of Hydrology, 608, Article 127686. https://doi.org/10.1016/j.jhydrol.2022.127686.
  • Hoekstra, A.Y. & Hung, P. (2002). Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. In: Proceedings of the International Expert Meeting on Virtual Water Trade. Value of Water Research Report Series No. 12, IHE, Delft, the Netherlands.
  • Hoekstra, A., Chapagain, A., Aldaya, M. & Mekonnen, M. (2011). The Water Footprint Assessment Manual: Setting the Global Standard. Daugherty Water for Food Global Institute: Faculty Publications. 77. https://digitalcommons.unl.edu/wffdocs/77(accessed 5 march 2022)
  • ISO (2014). Environmental Management -Water Footprint. Principles, Requirements and Guidelines. International Organization for Standardization. https://doi.org/10.3403/30250082u
  • Jaleta, M. E. (2021). Agricultural supply chain analysis during supply chain disruptions: Case of teff commodity supply chain in Ethiopia in the era of COVID-19. Sustainable Agriculture Research, 10(3), 63. ISSN 1927-050X, https://doi.org/10.5539/sar.v10n3p63.
  • Lovarelli, D., Bacenetti, J., Fiala, M. & Hilemicael, K. (2017). Water productivity of teff under semi-arid climates. Journal of Environment and Earth Science, 7, 116-123.
  • (2016). Water footprint of crop productions: A review. Science of The Total Environment, 548–549, 236–251. https://doi.org/10.1016/j.scitotenv.2016.01.022.
  • Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600. https://doi.org/10.5194/hess-15-1577-2011Value of Water Research Report Series No. 47 U the Netherlands: NESCO-IHE, Delft.
  • Minten, B., Taffesse, A. & Brown, P. (2018). Economics of teff: exploring Ethiopia's biggest cash crop. ARGIS, https://doi.org/10.2499/9780896292833.
  • Moges, D. (2020). Technical efficiency of smallholder teff producing farmers in Ethiopia. Journal of Business and Economic Management 9(6), 218-228, https://doi.org/10.15413/jbem.2020.0170.
  • Rosenberg, R., Norberg, S., Smith, J., Charlton, B., Rykbost, K. & Shock, C. (2005). Yield and quality of teff forage as the function of varying fertilizer and irrigation. Klamath basin: https://www.researchgate.net/profile/BrianCharlton/publication/266467883_Yield_and_Quality_of_Teff_Forage_as_a_Function_of_Varying_Rates_of_Applied_Irrigation_and_Nitrogen/links/55f07b2e08aef559dc46d0de/Yield-and-Quality-of-Teff-Forage-as-a-Function-of-V.
  • Swennenhuis, J. (2009). CROPWAT Version 8.0 model. FAO, Vialedelle Terme di Caracalla 00100. Rome, Italy.http://www.fao.org/nr/ water/infores_databases_cropwat.html.: FAO (accessed 8 march 2022).
  • Tadele, E., & Tewelde, A. G. (2019). Evaluating the economic water productivity under full and deficit irrigation; the case of sesame crop (Sesumum indicum L.) in Woreda Kafta-Humera,Tigrai-Ethiopia. Water Science, 75-83, https://doi.org/ 10.1080/11104929.2019.1617481.
  • Tuyishimire, A., Liu, Y., Yin, J., Kou, L., Lin, S., Lin, J., Kubwimana, J. J., Moharrami, K. & Habimana Simbi, C. (2022). Drivers of the increasing water footprint in Africa: The food consumption perspective, Science of the Total Environment, 809, Article 152196. https://doi.org/10.1016/j.scitotenv.2021.152196.
  • Steduto, P., Hsiao, T. C., Fereres, E., Raes, D. (2012). Crop Yield Response to Water. Irrigation and Drainage Paper 66, United Nations FAO, Rome. http://www.fao.org/docrep/016/i2800e/i2800e00.htm.
  • USAID (2015). A Climate Trend Analysis of Ethiopia. https://www.usaid.gov/sites/default/files/documents/1860/A%2 0Climate%20Trend%20Analysis%20of%20Ethiopia.pdf: Rolla Publishing (accessed 07 august 2022).
  • World Bank (2023). Putting Africans at the Heart of Food Security and Climate Resilience. https://www.worldbank.org/en/news/immersive-story/2022/10/17/putting-africans-at-the-heart-of-food-security-and-climate-(resilience#:~:text=At%20least%20one%20in%20five,Crises%202022%20Mid%2DYear%20Update.(accessed 16 august 2023).
  • WWF (2023). Water in Africa. https://wwfeu.awsassets.panda.org/downloads/waterinafricaeng.pdf
  • World Bank (2017). The World Bank Data of Ethiopia’s Renewable Freshwater Water Resource per Capita. https://data.worldbank.org/indicator/ER.H2O.FWTL.ZS?locations=ET (Accessed 16 August 2023).
  • WFN (2016). Country Water Footprint Profile. www.waterfootprintnetwork.org: WFN ( accessed 21 August 2022).
  • Yihun, Y. M. (2015). Agricultural Water Productivity Optimization for irrigated Teff (Eragrostic Tef) in a Water Scarce Semi-arid Region of Ethiopia. Netherlands: CRC Press.
  • Yumba, J., Bij De Vaate, M. D., Kiambi, D. & Kebebew, F. (2014). Geographic information systems for assessment of climate change effects on teff in Ethiopia. African Crop Science Journal, 22, 847 - 858.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer), Gıda Sürdürülebilirliği
Bölüm Araştırma Makaleleri
Yazarlar

Meka Taher Yimam 0000-0001-9183-8244

Gökşen Çapar 0000-0002-4636-9343

Erken Görünüm Tarihi 17 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 3 Kasım 2024
Kabul Tarihi 3 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 1

Kaynak Göster

APA Yimam, M. T., & Çapar, G. (2025). Evaluation of teff production in Ethiopia using water footprint analysis for food security. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(1), 49-64. https://doi.org/10.29050/harranziraat.1578338

Derginin Tarandığı İndeksler

13435  19617   22065  13436  1344013445  13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.