Araştırma Makalesi
BibTex RIS Kaynak Göster

Sedir Katranının Ascochyta rabie’nin neden olduğu nohut yanıklıklığının kontrolü üzerine etkisi

Yıl 2025, Cilt: 29 Sayı: 1, 11 - 22

Öz

Ascochyta yanıklığı (Ascochyta rabiei), dünya çapında nohutu etkileyen önemli bir fungal hastalıktır. Zararlı çevresel etkileri olan sentetik fungisitler hastalığın kontrolünde yaygın olarak kullanılmaktadır. Alternatif olarak hastalık yönetimi için çeşitli bitki ekstraktları araştırılmaktadır. Bu çalışmada sedir katranının antifungal aktivitesi, hastalığı kontrol etme potansiyeli ve nohutta hastalık önleme mekanizması değerlendirilmiştir. Antifungal aktivite sonuçları, sedir katranının %1 ve %5'lik uygulama dozlarının misel gelişimini %50'den daha az engellediğini, %10, %25 ve %50'lik dozların ise %50'den daha büyük bir inhibisyon etkisine sahip olduğunu ancak bitki için toksik olduğu görülmüştür. Bu nedenle farklı uygulama zamanlarında sedir katranının hastalıkları önleme potansiyelini belirlemek için %0,5, %1 ve %2'lik dozlar uygulanmıştır. Ascochyta rabiei aşılamasından 72 saat önce uygulanan sedir katranı uygulaması nohut bitkilerinde hastalık gelişimini etkili bir şekilde önlemiştir. Bu uygulma aynı zamanda MDA içeriğini de azalttığı; bu da zarın patojen saldırısından korunduğunu göstermiştir. Sonuçlar, sedir katranının gelecekteki entegre mücadele yönetimi programları için etkili bir biyo-fungusit olarak değerlendirilebileceğini göstermektedir

Kaynakça

  • Aebi, H. (1983). Catalase in Vitro. Met Enzy. 105:121-126. http://dx.doi.org/10.1016/S0076-6879(84)05016-3
  • Akhtar, R., Javaid, A., Qureshi, M.Z. (2020). Bioactive constituents of shoot extracts of Sisymbrium irio against Fusarium oxysporum f. sp. cepae. Planta Daninha. https://doi.org/10.1590/S0100-83582020380100008
  • Aydin, M.H, Oğu,z A., Erdemci, İ., Karademir, Ç. (2016). Control of Ascochyta Blight (Ascochytha rabiei) in Chickpea in Winter Sowing in Southeastern Anatolia. J Turk Phyto. 45:2-3:87-96
  • Bahmani, M., Maali-Amiri, R., Javan-Nikkhah, M., Atghia, O., Rasolnia, A. (2020). Enhanced Tolerance to As,cochyta Blight in Chickpea Plants via Low Temperature Acclimation. Russian. J Plant Physiol. https://doi.org/10.1134/S1021443720040020
  • Bates, L.S, Waldren RP, Teare ID (1973)Rapid determination of free proline for water-stress studies. Plant Soil. https://doi.org/10.1007/BF00018060
  • Bayar, Y. (2018). Determination of Antifungal Activity of Mentha spicata L. Essential OilsAgainst Different Isolates of Chickpea Blight Disease [Ascochyta rabiei (Pass) Labr.] Turk J Agric Res. https://doi.org /10.19159/tutad.346569
  • Beyer, W.F, Fridovich, I. (1987). Assaying for superoxide disniutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559-566
  • Çevik, S (2021). Effects of Severe Drought Stress on Some Physiological and Biochemical Parameters of AMF Inoculated C. arietinum. YYU J AGR SCI. https://doi.org/10.29133/yyutbd.870384
  • Chun, S,C., Paramasivan, M., Chandrasekaran, M. (2018). Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02525
  • Coram, T.E., Pang, E.C. (2006). Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J. https://doi.org/10.1111/j.1467-7652.2006.00208.x
  • Deokar, S.D., Girase, V.S., Patil, S.G., Bhavsar, V.V. (2019).Assessment and Implication of Selection Indices in F2 Generation of Chickpea (Cicer arientinum L.). IJCMAS. https://doi.org/10.20546/ijcmas.2019.810.109
  • Food and Agriculture Organization (2023). FAOSTAT Statistical Database
  • Fox, J. (2017). Using the R Commander: A Point-and-Click Interface for R. Chapman and Hall/CRC Press.
  • Gayacharan, R.U., Singh, S., Basandrai, A.K., Rathee, V.K., Tripathi, K., Singh, N., Dixit, G.P., Rana, J.C., Pandey, S., Kumar, A.,et al. (2020). Identification of novel resistant sources for ascochyta blight (Ascochyta rabiei) in chickpea. PLoS ONE https://doi.org/10.1371/journal.pone.0240589
  • Ghanem. S., & Olama, Z. (2014). Antimicrobial potential of Lebanese cedar extract against human pathogens and food spoilage microorganisms. EJBPSP 1:13-26.
  • Hasanian, S., Sofalian, O., Zare, N., Tarinejad, A., Davari, M. (2020). Effect of Ascochyta blight disease on antioxidant enzymes activities, amount of proline and carbohydrate in some chickpea genotypes. IJGPB. https://doi.org/10.30479/IJGPB.2021.15181.1292
  • Iqbal, A., Ateeq, N., Khalil, I.A., Perveen, S., Saleemullah, S. (2006). Physicochemical characteristics and amino acid profile of chickpea cultivars grown in Pakistan. J Foodserv17, 94–101
  • Imtiaz, M., Abang, M.M., Malhotra, R.S., Ahmed, S., Bayaa, B. (2011). Pathotype IV, a new and highly virulent pathotype of Didymella rabiei, causing Ascochyta blight in chickpea in Syria. Plant Dis. https://doi.org/10.1094/PDIS-04-11-0333.
  • Javaid, A., Afzal, R., Shoaib, A. (2020). Biological management of southern blight of chili by Penicillium oxalicum and leaves of Eucalyptus citriodora. IJAB. https://doi.org/10.17957/IJAB/15.1263.
  • Jukanti, A.K., Gaur, P.M., Gowda, C.L.L., Chibbar, R.N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 108, S11–S26
  • Kaur, K., Grewal, S.K., Singh, S., Rani, U., Bhardwaj, R.D. (2021).Timing and intensity of upregulated defensive enzymes is a key factor determining resistance in chickpea to Ascochyta rabiei. Phy Mol Plant Pathol. https://doi.org/10.1016/j.pmpp.2021.101645
  • Kızıl, M., Kizil, G., Yavuz, M., Aytekin, Ç. (2002). Antimicrobial activity of resins obtained from the roots and stems of Cedrus libani and Abies cilicia. Appl Biochem Microbiol. https://doi.org/10.1023/A:1014358532581
  • Kumar, A., Perween, S., Kumar, R.R., Kumar, S., Kumar, M., Ranjan, R.D. (2020). Chickpea Biotic Resistance Breeding in The Genomic Era: Progress and Prospects. TTPP 1:307-329
  • Kurt, Y., & Isık, K. (2012). Comparison of tar produced by traditional and laboratory methods. Stud Ethno-Med 6(2):77-83
  • Kurt, Y., & Kaçar, M.S., Isık, K. (2008). Traditional tar production from Cedrus libani A. Rich on the Taurus Mountains in Southern Turkey. Eco Bot. https://doi.org/10.1007/s12231-008-9023-x
  • Nene, Y.L. (1982). A Review of Ascochyta Blight of Chickpea. Trop Pest Manag. https://doi.org/10.1080/09670878209370675
  • Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Annual Biochem. https://doi.org/10.1016/0003-2697(79)90738-3
  • R Core Team (2021) R: A language and environment for statistical computing Vienna,Austria: R Foundation for Statistical Computing. https:// www.R-project.org/
  • Rani, U., Singh, S., Basandrai, A.K., Rathee, V.K., Tripathi, K., Singh, N., Singh, K. (2020). Identification of novel resistant sources for ascochyta blight (Ascochyta rabiei) in chickpea. PloS one. https://doi.org/10.1371/journal.pone.0240589
  • Reddy, M.V., & Singh, K.B. (1984). Evaluation of a world collection of chickpea germplasm accessions for resistance to Ascochyta blight. Plant Dis. https://doi: 10.1094/PD-68-900
  • RStudio Team (2021). rstudio: Integrated Development for R. Boston, MA: RStudio Inc. http://www.rstudio.com/
  • Salotti, I., & Rossi, V.A. (2021). Mechanistic Weather-Driven Model for Ascochyta rabiei Infection and Disease Development in Chickpea. Plants. https://doi.org/10.3390/plants10030464
  • Sankara, R.K., & Acharyya, P. (2012). Incidence of yellow vein mosaic virus disease of okra [Abelmoschus esculentus (L.) Moench] under summer and rainy environments. Int. J. Curr. Res. 4;518 – 21
  • Sharma, M., & Ghosh, R. (2016). An update on genetic resistance of chickpea to Ascochyta blight. Agron J. https://doi.org/10.3390/agronomy6010018
  • Sherazi, A.Z., Jabeen, K., Iqbal, S., Yousaf, Z. (2016). Management of Ascochyta rabiei by Chenopodium album extracts. Planta Daninha. https://doi.org/10.1590/S0100-83582016340400007
  • Shuping, D.S.S., & Eloff, J.N. (2017). The use of plants to protect plants and food against fungal pathogens: a review. Afr J Tradit Complement Altern Med. https://doi.org/10.21010/ajtcam.v14i4.14. eCollection 2017
  • Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2009.11.009
  • Takci, H.A.M., Turkmen, F.U., Sari, M. (2021). Effect of Cedar (Cedrus libani A. Rich) Tar on Bacterial Growth. J Microbiol Biotechnol Food Sci. https://doi.org/10.15414/jmbfs.2020.9.4.805-808
  • Tekin, M., Sari, D., Catal, M., Ikten, C., Smykal, P., Penmetsa, RV., Von Wettberg, E.J., Toker, C. (2018). Eco-geographic distribution of Cicer isauricum .P.H. Davis and threats to the species. Gen Res Crop Evol. https://doi.org/10.1007/s10722-017-0509-1
  • Toker, C., Berger, J., Eker, T., Sari, D., Sari, H., Gokturk, R.S., Von Wettberg, E.J. (2021). Cicer turcicum: A new Cicer species and its potential to improve chickpea. Front Plant Sci. https://doi.org/10.3389/fpls.2021.662891
  • Trapero-Casas, A., & Kaiser, W.J. (1992). Development of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea straw. Phytopathol 82:1261-1266
  • Udupa, S.M., Weigand, F., Saxena, M.C., Kahl, G. (1998). Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpea. Theory Apply Gen. https://doi: 10.1007/s001220050899
  • Üstün, A.S., & Dolar, S. (2001). Ascochyta Yanıklığı (Ascochyta rabiei (Pass.) Labr.)'na Dayanımları Farklı Nohut Çeşitlerinde Oransal Su, Kuru Madde ve Prolin Miktarlarındaki Değişimler. J Agri Sci. https://doi.org/10.1501/Tarimbil_0000000266
  • Venditti, A., Maggi, F., Saab, A.M., Bramucci, M., Quassinti, L., Petrelli, D., Vitali, L.A., Lupidi, G., Samrani, A., Borgatti, M., Bernardi, F., Gambari, R., Abboud, J., Saab, M.J., Bianco, A. (2020). Antiproliferative, antimicrobial and antioxidant properties of Cedrus libani and Pinus pinea wood oils and Juniperus excelsa berry oil. Plant Biosys Inter J Deal Asp Plant Biol. https://doi.org/10.1080/11263504.2020.1864495
  • Wani, F.F., Wani, T.A., Shah, T.A., Ayoub, L., Amin, Z., Manzoor, T., Bhat, T.A. (2022). Efficacy of different fungicides, plant extracts and bioagents against Phoma exigua causing Ascochyta blight of common bean (Phaseolus vulgaris L.). Ind Phytopathol. 75(4), 1191-1195
  • Zhang, J., Chen, W., Shang, Y., Guo, C., Peng, S., Chen, W. (2020). Biogeographic distribution of chickpea rhizobia in the world. In Molecular Aspects of Plant Beneficial Microbes in Agriculture; Sharma, V., Salwan, R., Al-Ani, K.L.T., Eds.; Academic Press: Chennai, India, pp. 235–239

Effects of the foliar cedar tar treatment on the control of the Ascochyta blight caused by Ascochyta rabiei

Yıl 2025, Cilt: 29 Sayı: 1, 11 - 22

Öz

Ascochyta blight (Ascochyta rabiei) is a significant fungal disease that affects chickpea crops all around the world. Synthetic fungicides, which have harmful environmental effects, are commonly used to control the disease. Alternatively, various plant extracts have been explored for disease management. In this study, the antifungal activity of cedar tar, its potential to control the disease, and its disease prevention mechanism in chickpeas were evaluated. The antifungal activity results indicated that whereas 10%, 25%, and 50% cedar tar application doses had an inhibitory effect greater than 50% but were harmful to the plant, 1% and 5% cedar tar application doses suppressed mycelial growth by less than 50%. Therefore, doses of 0.5 %⁻¹, 1 %, and 2 %were selected to determine the disease prevention potential of cedar tar at different application times. Cedar tar treatment applied 72 hours before Ascochyta rabiei inoculation effectively prevented disease development in chickpea plants. This treatment also decreased MDA content, indicating the membrane was protected from pathogen attack. These results suggest that cedar tar can be considered an effective bio-fungicide formulation for future integrated pest management programs.

Kaynakça

  • Aebi, H. (1983). Catalase in Vitro. Met Enzy. 105:121-126. http://dx.doi.org/10.1016/S0076-6879(84)05016-3
  • Akhtar, R., Javaid, A., Qureshi, M.Z. (2020). Bioactive constituents of shoot extracts of Sisymbrium irio against Fusarium oxysporum f. sp. cepae. Planta Daninha. https://doi.org/10.1590/S0100-83582020380100008
  • Aydin, M.H, Oğu,z A., Erdemci, İ., Karademir, Ç. (2016). Control of Ascochyta Blight (Ascochytha rabiei) in Chickpea in Winter Sowing in Southeastern Anatolia. J Turk Phyto. 45:2-3:87-96
  • Bahmani, M., Maali-Amiri, R., Javan-Nikkhah, M., Atghia, O., Rasolnia, A. (2020). Enhanced Tolerance to As,cochyta Blight in Chickpea Plants via Low Temperature Acclimation. Russian. J Plant Physiol. https://doi.org/10.1134/S1021443720040020
  • Bates, L.S, Waldren RP, Teare ID (1973)Rapid determination of free proline for water-stress studies. Plant Soil. https://doi.org/10.1007/BF00018060
  • Bayar, Y. (2018). Determination of Antifungal Activity of Mentha spicata L. Essential OilsAgainst Different Isolates of Chickpea Blight Disease [Ascochyta rabiei (Pass) Labr.] Turk J Agric Res. https://doi.org /10.19159/tutad.346569
  • Beyer, W.F, Fridovich, I. (1987). Assaying for superoxide disniutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559-566
  • Çevik, S (2021). Effects of Severe Drought Stress on Some Physiological and Biochemical Parameters of AMF Inoculated C. arietinum. YYU J AGR SCI. https://doi.org/10.29133/yyutbd.870384
  • Chun, S,C., Paramasivan, M., Chandrasekaran, M. (2018). Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02525
  • Coram, T.E., Pang, E.C. (2006). Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J. https://doi.org/10.1111/j.1467-7652.2006.00208.x
  • Deokar, S.D., Girase, V.S., Patil, S.G., Bhavsar, V.V. (2019).Assessment and Implication of Selection Indices in F2 Generation of Chickpea (Cicer arientinum L.). IJCMAS. https://doi.org/10.20546/ijcmas.2019.810.109
  • Food and Agriculture Organization (2023). FAOSTAT Statistical Database
  • Fox, J. (2017). Using the R Commander: A Point-and-Click Interface for R. Chapman and Hall/CRC Press.
  • Gayacharan, R.U., Singh, S., Basandrai, A.K., Rathee, V.K., Tripathi, K., Singh, N., Dixit, G.P., Rana, J.C., Pandey, S., Kumar, A.,et al. (2020). Identification of novel resistant sources for ascochyta blight (Ascochyta rabiei) in chickpea. PLoS ONE https://doi.org/10.1371/journal.pone.0240589
  • Ghanem. S., & Olama, Z. (2014). Antimicrobial potential of Lebanese cedar extract against human pathogens and food spoilage microorganisms. EJBPSP 1:13-26.
  • Hasanian, S., Sofalian, O., Zare, N., Tarinejad, A., Davari, M. (2020). Effect of Ascochyta blight disease on antioxidant enzymes activities, amount of proline and carbohydrate in some chickpea genotypes. IJGPB. https://doi.org/10.30479/IJGPB.2021.15181.1292
  • Iqbal, A., Ateeq, N., Khalil, I.A., Perveen, S., Saleemullah, S. (2006). Physicochemical characteristics and amino acid profile of chickpea cultivars grown in Pakistan. J Foodserv17, 94–101
  • Imtiaz, M., Abang, M.M., Malhotra, R.S., Ahmed, S., Bayaa, B. (2011). Pathotype IV, a new and highly virulent pathotype of Didymella rabiei, causing Ascochyta blight in chickpea in Syria. Plant Dis. https://doi.org/10.1094/PDIS-04-11-0333.
  • Javaid, A., Afzal, R., Shoaib, A. (2020). Biological management of southern blight of chili by Penicillium oxalicum and leaves of Eucalyptus citriodora. IJAB. https://doi.org/10.17957/IJAB/15.1263.
  • Jukanti, A.K., Gaur, P.M., Gowda, C.L.L., Chibbar, R.N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 108, S11–S26
  • Kaur, K., Grewal, S.K., Singh, S., Rani, U., Bhardwaj, R.D. (2021).Timing and intensity of upregulated defensive enzymes is a key factor determining resistance in chickpea to Ascochyta rabiei. Phy Mol Plant Pathol. https://doi.org/10.1016/j.pmpp.2021.101645
  • Kızıl, M., Kizil, G., Yavuz, M., Aytekin, Ç. (2002). Antimicrobial activity of resins obtained from the roots and stems of Cedrus libani and Abies cilicia. Appl Biochem Microbiol. https://doi.org/10.1023/A:1014358532581
  • Kumar, A., Perween, S., Kumar, R.R., Kumar, S., Kumar, M., Ranjan, R.D. (2020). Chickpea Biotic Resistance Breeding in The Genomic Era: Progress and Prospects. TTPP 1:307-329
  • Kurt, Y., & Isık, K. (2012). Comparison of tar produced by traditional and laboratory methods. Stud Ethno-Med 6(2):77-83
  • Kurt, Y., & Kaçar, M.S., Isık, K. (2008). Traditional tar production from Cedrus libani A. Rich on the Taurus Mountains in Southern Turkey. Eco Bot. https://doi.org/10.1007/s12231-008-9023-x
  • Nene, Y.L. (1982). A Review of Ascochyta Blight of Chickpea. Trop Pest Manag. https://doi.org/10.1080/09670878209370675
  • Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Annual Biochem. https://doi.org/10.1016/0003-2697(79)90738-3
  • R Core Team (2021) R: A language and environment for statistical computing Vienna,Austria: R Foundation for Statistical Computing. https:// www.R-project.org/
  • Rani, U., Singh, S., Basandrai, A.K., Rathee, V.K., Tripathi, K., Singh, N., Singh, K. (2020). Identification of novel resistant sources for ascochyta blight (Ascochyta rabiei) in chickpea. PloS one. https://doi.org/10.1371/journal.pone.0240589
  • Reddy, M.V., & Singh, K.B. (1984). Evaluation of a world collection of chickpea germplasm accessions for resistance to Ascochyta blight. Plant Dis. https://doi: 10.1094/PD-68-900
  • RStudio Team (2021). rstudio: Integrated Development for R. Boston, MA: RStudio Inc. http://www.rstudio.com/
  • Salotti, I., & Rossi, V.A. (2021). Mechanistic Weather-Driven Model for Ascochyta rabiei Infection and Disease Development in Chickpea. Plants. https://doi.org/10.3390/plants10030464
  • Sankara, R.K., & Acharyya, P. (2012). Incidence of yellow vein mosaic virus disease of okra [Abelmoschus esculentus (L.) Moench] under summer and rainy environments. Int. J. Curr. Res. 4;518 – 21
  • Sharma, M., & Ghosh, R. (2016). An update on genetic resistance of chickpea to Ascochyta blight. Agron J. https://doi.org/10.3390/agronomy6010018
  • Sherazi, A.Z., Jabeen, K., Iqbal, S., Yousaf, Z. (2016). Management of Ascochyta rabiei by Chenopodium album extracts. Planta Daninha. https://doi.org/10.1590/S0100-83582016340400007
  • Shuping, D.S.S., & Eloff, J.N. (2017). The use of plants to protect plants and food against fungal pathogens: a review. Afr J Tradit Complement Altern Med. https://doi.org/10.21010/ajtcam.v14i4.14. eCollection 2017
  • Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2009.11.009
  • Takci, H.A.M., Turkmen, F.U., Sari, M. (2021). Effect of Cedar (Cedrus libani A. Rich) Tar on Bacterial Growth. J Microbiol Biotechnol Food Sci. https://doi.org/10.15414/jmbfs.2020.9.4.805-808
  • Tekin, M., Sari, D., Catal, M., Ikten, C., Smykal, P., Penmetsa, RV., Von Wettberg, E.J., Toker, C. (2018). Eco-geographic distribution of Cicer isauricum .P.H. Davis and threats to the species. Gen Res Crop Evol. https://doi.org/10.1007/s10722-017-0509-1
  • Toker, C., Berger, J., Eker, T., Sari, D., Sari, H., Gokturk, R.S., Von Wettberg, E.J. (2021). Cicer turcicum: A new Cicer species and its potential to improve chickpea. Front Plant Sci. https://doi.org/10.3389/fpls.2021.662891
  • Trapero-Casas, A., & Kaiser, W.J. (1992). Development of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea straw. Phytopathol 82:1261-1266
  • Udupa, S.M., Weigand, F., Saxena, M.C., Kahl, G. (1998). Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpea. Theory Apply Gen. https://doi: 10.1007/s001220050899
  • Üstün, A.S., & Dolar, S. (2001). Ascochyta Yanıklığı (Ascochyta rabiei (Pass.) Labr.)'na Dayanımları Farklı Nohut Çeşitlerinde Oransal Su, Kuru Madde ve Prolin Miktarlarındaki Değişimler. J Agri Sci. https://doi.org/10.1501/Tarimbil_0000000266
  • Venditti, A., Maggi, F., Saab, A.M., Bramucci, M., Quassinti, L., Petrelli, D., Vitali, L.A., Lupidi, G., Samrani, A., Borgatti, M., Bernardi, F., Gambari, R., Abboud, J., Saab, M.J., Bianco, A. (2020). Antiproliferative, antimicrobial and antioxidant properties of Cedrus libani and Pinus pinea wood oils and Juniperus excelsa berry oil. Plant Biosys Inter J Deal Asp Plant Biol. https://doi.org/10.1080/11263504.2020.1864495
  • Wani, F.F., Wani, T.A., Shah, T.A., Ayoub, L., Amin, Z., Manzoor, T., Bhat, T.A. (2022). Efficacy of different fungicides, plant extracts and bioagents against Phoma exigua causing Ascochyta blight of common bean (Phaseolus vulgaris L.). Ind Phytopathol. 75(4), 1191-1195
  • Zhang, J., Chen, W., Shang, Y., Guo, C., Peng, S., Chen, W. (2020). Biogeographic distribution of chickpea rhizobia in the world. In Molecular Aspects of Plant Beneficial Microbes in Agriculture; Sharma, V., Salwan, R., Al-Ani, K.L.T., Eds.; Academic Press: Chennai, India, pp. 235–239
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fitopatoloji, Pestisititler ve Toksikoloji
Bölüm Araştırma Makaleleri
Yazarlar

Emine Burcu Turgay 0000-0003-1150-4901

Sertan Çevik 0000-0003-1259-7863

Eray Şimşek 0000-0003-4984-4223

Kadir Akan 0000-0002-1612-859X

Erken Görünüm Tarihi 17 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 7 Kasım 2024
Kabul Tarihi 7 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 1

Kaynak Göster

APA Turgay, E. B., Çevik, S., Şimşek, E., Akan, K. (2025). Effects of the foliar cedar tar treatment on the control of the Ascochyta blight caused by Ascochyta rabiei. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(1), 11-22.

Derginin Tarandığı İndeksler

13435  19617   22065  13436  1344013445  13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.