Araştırma Makalesi
BibTex RIS Kaynak Göster

Karpuz (Citrullus lanatus L.) fidesi gelişim parametreleri ve klorofil içeriği üzerine Azospirillum lipoferum ve deniz yosunu uygulamalarının etkileri

Yıl 2025, Cilt: 29 Sayı: 1, 85 - 95
https://doi.org/10.29050/harranziraat.1612966

Öz

Azospirillum lipoferum (AzL) ve deniz yosunu (DY) uygulamalarının karpuz fidelerinin büyüme parametreleri ve klorofil içeriği üzerindeki etkilerini incelemek amacıyla yürütülen bu çalışma, Türkiye'deki sürdürülebilir fidecilik uygulamalarına katkı sağlamayı hedeflemiştir. Araştırma, Van Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi’nde kontrollü çevre koşullarında gerçekleştirilmiş ve 'Crimson Sweet' karpuz çeşidi kullanılmıştır. Toplamda 10 farklı uygulama grubu (AzL ve DY’nin üçer dozu ile kombinasyonları ve kontrol grubu) değerlendirilmiştir. Sonuçlar, Azospirillum’un düşük dozunun (1.25 mL L-1) kök yaş ağırlığı ve klorofil miktarı gibi parametrelerde daha yüksek performans sağladığını, ancak yüksek dozlarda büyümeyi olumsuz etkileyebileceğini göstermiştir. Deniz yosunu özünün yüksek dozu (5 mL L-1), yaprak sayısı, yaprak yaş ve kuru ağırlığı ile klorofil miktarında en iyi sonuçları sağlamıştır. Kombinasyon uygulamaları, özellikle orta dozlarda (2.5 mL L-1), klorofil miktarı ve yaprak yaş ağırlığı gibi fotosentezle ilişkili parametrelerde sinerjik etkiler göstermiştir. Çalışma, Azospirillum’un rizosferde besin alımını artırma kapasitesi ile deniz yosununun biyolojik aktif bileşenlerinin birleşiminin bitki gelişimini desteklediğini ortaya koymaktadır. Gelecekte bu biyostimülantların; doz, yöntem ve çevresel koşullara göre optimize edilmesi, etkilerinin moleküler düzeyde incelenmesi ve saha denemeleri ile ekonomik analizlerinin yapılması önerilmektedir. Bu çalışmadan elde edilen sonuçların, sürdürülebilir fidecilik uygulamalarının yaygınlaşmasına katkı sağlayabileceği düşünülmektedir.

Kaynakça

  • Abad, M. S. F., Abedi, B., Ne’emati, S. H., & Arouiee, H. (2019). Studying the effects of foliar spraying of seaweed extract as a bio-stimulant on the increase in the yield and quality of tomato (Lycopersicon esculentum L.). World Journal of Environmental Biosciences, 8(3), 11–17.
  • Al Shatri, A. H. N. (2018). Effect of seaweed extract application on the growth, flowering, and fruit characteristics of strawberry (Fragaria × ananassa Duch) cv. Albion growing in Iraq condition (Master's thesis).
  • Ali, A. F., Alsaady, M. H., & Salim, H. A. (2019). Impact of bio fertilizer and magnetic irrigation water on growth and yield of melon Cucumis melo L. IOP Conference Series: Earth and Environmental Science, 388(1), 012070. DOI: https://doi.org/10.1088/1755-1315/388/1/012070
  • Aliko, A. A., Manga, A. A., Zakari, S. M., Haruna, H., Tafinta, I. Y., & Umar, M. (2017). Comparative effect of aqueous seaweed extract and IBA on fruit abscission in watermelon and okra. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 3(2), 1.
  • Aoudi, Y., Agake, S. I., Habibi, S., Stacey, G., Yasuda, M., & Ohkama-Ohtsu, N. (2024). Effect of bacterial extracellular polymeric substances from Enterobacter spp. on rice growth under abiotic stress and transcriptomic analysis. Microorganisms, 12(6), 1212. https://doi.org/10.3390/microorganisms12061212
  • Benchlih, S., Esmaeel, Q., Aberkani, K., Tahiri, A., Belabess, Z., Lahlali, R., & Barka, E. A. (2023). Modes of action of biocontrol agents and elicitors for sustainable protection against bacterial canker of tomato. Microorganisms, 11(3), 726. https://doi.org/10.3390/microorganisms11030726
  • Bernados, L. C., Espineli, J. P., Anarna, J. A., & Aggangan, N. S. (2024). Increasing tomato productivity through integrated nutrient sources and inoculation with arbuscular mycorrhizal fungi and Azospirillum spp. Horticulturae, 10(10), 1056. https://doi.org/10.3390/horticulturae10101056
  • Chaturvedi, S., Kulshrestha, S., & Bhardwaj, K. (2022). Role of seaweeds in plant growth promotion and disease management. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 217-238). Elsevier. https://doi.org/10.1016/B978-0-323-85579-2.00007-1
  • Coniglio, A., Larama, G., Nievas, S., Cale, N. L., Mora, V., Torres, D., ... & Cassán, F. (2024). Auxin-mediated modulation of maize rhizosphere microbiome: Insights from Azospirillum inoculation and indole-3-acetic acid treatment. Journal of Soil Science and Plant Nutrition, 1-16. https://doi.org/10.1007/s42729-024-02013-3
  • da Silva Oliveira, C. E., Jalal, A., Vitória, L. S., Giolo, V. M., Oliveira, T. J. S. S., Aguilar, J. V., ... & Filho, M. C. M. T. (2023). Inoculation with Azospirillum brasilense strains AbV5 and AbV6 increases nutrition, chlorophyll, and leaf yield of hydroponic lettuce. Plants, 12(17), 3107. https://doi.org/10.3390/plants12173107
  • de Mendonça Júnior, A. F., dos Santos Rodrigues, A. P. M., Júnior, R. S., Negreiros, A. M. P., Bettini, M. O., Freitas, C. D. M., & Gomes, T. R. R. (2019). Seaweed extract Ascophyllum nodosum (L.) on the growth of watermelon plants. Journal of Experimental Agriculture International, 31(4). https://doi.org/10.9734/JEAI/2019/v31i430080
  • Dimkpa, C. O., Zeng, J., McLean, J. E., Britt, D. W., Zhan, J., & Anderson, A. J. (2012). Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Applied and Environmental Microbiology, 78(5), 1404-1410. https://doi.org/10.1128/AEM.07424-11
  • Doğan, Y. L. (2024). Bazı yararlı bakteri ve deniz yosunu kullanımının tuz stresi koşullarında kabak bitkilerine etkisi (Doktora tezi). Malatya Turgut Özal Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bahçe Bitkileri Anabilim Dalı.
  • Dohroo, A., & Thakur, D. R. (2024). Advances in Trichoderma seed and soil application for eco-sustainable agriculture. Global Scientific and Academic Research Journal of Multidisciplinary Studies, 3(3), 35-38.
  • FAO. (2020). Retrieved from: https://www.fao.org/family-farming/detail/en/c/1297809/ (Erişim Tarihi: 05.11.2024).
  • FAO. (2024). Retrieved from: https://www.fao.org/faostat/en/#data/QCL (Erişim Tarihi: 05.11.2024)
  • Gaytancıoğlu, O., & Yılmaz, F. (2024). Sustainable paddy farming in Edirne: Evaluating the impacts of excessive fertilizer and pesticide use. Sustainability, 16(17), 7814. https://doi.org/10.3390/su16177814
  • Hasan, A., Tabassum, B., Hashim, M., & Khan, N. (2024). Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria, 3(2), 59-75. https://doi.org/10.3390/bacteria3020005
  • Housh, A. B., Powell, G., Scott, S., Anstaett, A., Gerheart, A., Benoit, M., ... & Ferrieri, R. A. (2021). Functional mutants of Azospirillum brasilense elicit beneficial physiological and metabolic responses in Zea mays contributing to increased host iron assimilation. The ISME Journal, 15(5), 1505-1522. https://doi.org/10.1038/s41396-020-00866-x
  • Housh, A. B., Waller, S., Sopko, S., Powell, A., Benoit, M., Wilder, S. L., ... & Ferrieri, R. A. (2022). Azospirillum brasilense bacteria promotes Mn²⁺ uptake in maize with benefits to leaf photosynthesis. Microorganisms, 10(7), 1290. https://doi.org/10.3390/microorganisms10071290
  • Ibrahim, İ. R. (2018). Yapraktan hümik asit ve deniz yosunu ekstraktı uygulamasının plastik sera koşullarında hıyarın (Cucumis sativus L.) büyümesi ve verimi üzerine etkisi (Master's thesis). Bingöl Üniversitesi, Bingöl.
  • Jain, R., Mathur, A., Singh, D., & Rohillad, A. (2024). Fostering sustainable plant growth with rhizozpheric allies: A review. Asian Biotechnology & Development Review, 26(1).
  • Khan, N., Bano, A. M., & Babar, A. (2020). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PloS One, 15(4), e0231426. https://doi.org/10.1371/journal.pone.0232926
  • Koul, V., Tripathi, C., Adholeya, A., & Kochar, M. (2015). Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM. Research in Microbiology, 166(3), 174-185. https://doi.org/10.1016/j.resmic.2015.02.003
  • Kumar, V., Eid, E. M., Al-Bakre, D. A., Abdallah, S. M., Širić, I., Andabaka, Ž., ... & Choi, K. S. (2022). Combined use of sewage sludge and plant growth-promoting rhizobia improves germination, biochemical response and yield of ridge gourd (Luffa acutangula (L.) Roxb.) under field conditions. Agriculture, 12(2), 173. https://doi.org/10.3390/agriculture12020173
  • Melini, F., Melini, V., Luziatelli, F., Abou Jaoudé, R., Ficca, A. G., & Ruzzi, M. (2023). Effect of microbial plant biostimulants on fruit and vegetable quality: Current research lines and future perspectives. Frontiers in Plant Science, 14, 1251544. https://doi.org/10.3389/fpls.2023.1251544
  • Perisoara, A., Marinas, I. C., Geana, E. I., Constantin, M., Angheloiu, M., Pirvu, L., & Cristea, S. (2022). Phytostimulation and synergistic antipathogenic effect of Tagetes erecta extract in presence of rhizobacteria. Horticulturae, 8(9), 779. https://doi.org/10.3390/horticulturae8090779
  • Radwan, A. M., Ahmed, E. A., Donia, A. M., Mustafa, A. E., & Balah, M. A. (2023). Priming of Citrullus lanatus var. Colocynthoides seeds in seaweed extract improved seed germination, plant growth and performance under salinity conditions. Scientific Reports, 13(1), 11884. https://doi.org/10.1038/s41598-023-38711-8
  • Rocha, R., Lopes, T., Fidalgo, C., Alves, A., Cardoso, P., & Figueira, E. (2022). Bacteria associated with the roots of common bean (Phaseolus vulgaris L.) at different development stages: Diversity and plant growth promotion. Microorganisms, 11(1), 57. https://doi.org/10.3390/microorganisms11010057
  • Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Frontiers in Plant Science, 11, 40. https://doi.org/10.3389/fpls.2020.00040
  • Scott, S., Housh, A., Powell, G., Anstaett, A., Gerheart, A., Benoit, M., ... & Ferrieri, R. (2020). Crop yield, ferritin and Fe (II) boosted by Azospirillum brasilense (HM053) in corn. Agronomy, 10(3), 394. https://doi.org/10.3390/agronomy10030394
  • Shahrajabian, M. H., Petropoulos, S. A., & Sun, W. (2023). Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, 9(2), 193. https://doi.org/10.3390/horticulturae9020193
  • Shil, S., Adhikary, P., & Sachan, M. S. (2023). Frontiers in crop improvement. Volume 11, Special Issue I, 521
  • Silva, L. I. D., Oliveira, I. P. D., Jesus, E. D. C., Pereira, M. C., Pasqual, M., Araújo, R. C. D., & Dória, J. (2022). Fertilizer of the future: Beneficial bacteria promote strawberry growth and yield and may reduce the need for chemical fertilizer. Agronomy, 12(10), 2465. https://doi.org/10.3390/agronomy12102465
  • Tahmaz, H., Yüksel Küskü, D., & Kunter, B. (2024). Asmada deniz yosunu ve maya uygulamalarının biyostimulant ve tuz stresine karşı etkilerinin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29 (2), 569-588. https://doi.org/10.37908/mkutbd.1472846
  • Tejasree, A., Mirza, A., & Joka, V. S. (2024). Deciphering nature’s secret of seaweed extract as a biostimulant on horticultural crops: A review. Journal of Experimental Agriculture International, 46(6), 417-427. https://doi.org/10.9734/jeai/2024/v46i62494
  • TÜİK. (2024). Retrieved from: https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (Erişim Tarihi: 05.11.2024)
  • Vendruscolo, E. P., Campos, L. F. C., Seleguini, A., De Lima, S. F., Bortolheiro, F. P. D. A. P., Martins, M. B., ... & De Souza, M. I. (2023). Azospirillum brasilense and nitrogen fertilizer affect the development and quality of cantaloupe melons. Journal of Plant Growth Regulation, 42(9), 5452-5460. https://doi.org/10.1007/s00344-023-10928-x
  • WHO. (2024). Retrieved from: https://iris.who.int/handle/10665/377755 (Erişim Tarihi: 05.11.2024)

Effects of Azospirillum lipoferum and seaweed applications on watermelon (Citrullus lanatus L.) seedling growth parameters and chlorophyll content

Yıl 2025, Cilt: 29 Sayı: 1, 85 - 95
https://doi.org/10.29050/harranziraat.1612966

Öz

This study aimed to investigate the effects of Azospirillum lipoferum (AzL) and seaweed (Seaweed) treatments on growth parameters and chlorophyll content of watermelon seedlings and aimed to contribute to sustainable seedling practices in Turkey. The experiment was conducted at Van Yuzuncu Yil University, Faculty of Agriculture, under controlled environmental conditions, using the ‘Crimson Sweet’ watermelon cultivar. A total of 10 different treatment groups (three doses and combinations of AzL and DY and control group) were evaluated. The results indicated that a low dose of Azospirillum (1.25 mL L-1) enhanced parameters such as root fresh weight and chlorophyll content, while high doses appeared to negatively affect growth. The high dose of seaweed extract (5 mL L-1) provided the best results in leaf number, leaf fresh and dry weight and chlorophyll content. Combination treatments, especially at medium doses (2.5 mL L-1), showed synergistic effects on photosynthesis-related parameters including chlorophyll content and leaf fresh weight. The study reveals that the combination of the capacity of Azospirillum to enhance nutrient uptake in the rhizosphere and the biologically active components of seaweed promotes plant growth. Future studies should focus on optimizing these biostimulants based on dose, application method, and environmental conditions, as well as investigating their molecular effects and conducting field trials and economic analyses. The results obtained from this study are thought to contribute to the widespread adoption of sustainable seedling practices.

Kaynakça

  • Abad, M. S. F., Abedi, B., Ne’emati, S. H., & Arouiee, H. (2019). Studying the effects of foliar spraying of seaweed extract as a bio-stimulant on the increase in the yield and quality of tomato (Lycopersicon esculentum L.). World Journal of Environmental Biosciences, 8(3), 11–17.
  • Al Shatri, A. H. N. (2018). Effect of seaweed extract application on the growth, flowering, and fruit characteristics of strawberry (Fragaria × ananassa Duch) cv. Albion growing in Iraq condition (Master's thesis).
  • Ali, A. F., Alsaady, M. H., & Salim, H. A. (2019). Impact of bio fertilizer and magnetic irrigation water on growth and yield of melon Cucumis melo L. IOP Conference Series: Earth and Environmental Science, 388(1), 012070. DOI: https://doi.org/10.1088/1755-1315/388/1/012070
  • Aliko, A. A., Manga, A. A., Zakari, S. M., Haruna, H., Tafinta, I. Y., & Umar, M. (2017). Comparative effect of aqueous seaweed extract and IBA on fruit abscission in watermelon and okra. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 3(2), 1.
  • Aoudi, Y., Agake, S. I., Habibi, S., Stacey, G., Yasuda, M., & Ohkama-Ohtsu, N. (2024). Effect of bacterial extracellular polymeric substances from Enterobacter spp. on rice growth under abiotic stress and transcriptomic analysis. Microorganisms, 12(6), 1212. https://doi.org/10.3390/microorganisms12061212
  • Benchlih, S., Esmaeel, Q., Aberkani, K., Tahiri, A., Belabess, Z., Lahlali, R., & Barka, E. A. (2023). Modes of action of biocontrol agents and elicitors for sustainable protection against bacterial canker of tomato. Microorganisms, 11(3), 726. https://doi.org/10.3390/microorganisms11030726
  • Bernados, L. C., Espineli, J. P., Anarna, J. A., & Aggangan, N. S. (2024). Increasing tomato productivity through integrated nutrient sources and inoculation with arbuscular mycorrhizal fungi and Azospirillum spp. Horticulturae, 10(10), 1056. https://doi.org/10.3390/horticulturae10101056
  • Chaturvedi, S., Kulshrestha, S., & Bhardwaj, K. (2022). Role of seaweeds in plant growth promotion and disease management. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 217-238). Elsevier. https://doi.org/10.1016/B978-0-323-85579-2.00007-1
  • Coniglio, A., Larama, G., Nievas, S., Cale, N. L., Mora, V., Torres, D., ... & Cassán, F. (2024). Auxin-mediated modulation of maize rhizosphere microbiome: Insights from Azospirillum inoculation and indole-3-acetic acid treatment. Journal of Soil Science and Plant Nutrition, 1-16. https://doi.org/10.1007/s42729-024-02013-3
  • da Silva Oliveira, C. E., Jalal, A., Vitória, L. S., Giolo, V. M., Oliveira, T. J. S. S., Aguilar, J. V., ... & Filho, M. C. M. T. (2023). Inoculation with Azospirillum brasilense strains AbV5 and AbV6 increases nutrition, chlorophyll, and leaf yield of hydroponic lettuce. Plants, 12(17), 3107. https://doi.org/10.3390/plants12173107
  • de Mendonça Júnior, A. F., dos Santos Rodrigues, A. P. M., Júnior, R. S., Negreiros, A. M. P., Bettini, M. O., Freitas, C. D. M., & Gomes, T. R. R. (2019). Seaweed extract Ascophyllum nodosum (L.) on the growth of watermelon plants. Journal of Experimental Agriculture International, 31(4). https://doi.org/10.9734/JEAI/2019/v31i430080
  • Dimkpa, C. O., Zeng, J., McLean, J. E., Britt, D. W., Zhan, J., & Anderson, A. J. (2012). Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Applied and Environmental Microbiology, 78(5), 1404-1410. https://doi.org/10.1128/AEM.07424-11
  • Doğan, Y. L. (2024). Bazı yararlı bakteri ve deniz yosunu kullanımının tuz stresi koşullarında kabak bitkilerine etkisi (Doktora tezi). Malatya Turgut Özal Üniversitesi, Lisansüstü Eğitim Enstitüsü, Bahçe Bitkileri Anabilim Dalı.
  • Dohroo, A., & Thakur, D. R. (2024). Advances in Trichoderma seed and soil application for eco-sustainable agriculture. Global Scientific and Academic Research Journal of Multidisciplinary Studies, 3(3), 35-38.
  • FAO. (2020). Retrieved from: https://www.fao.org/family-farming/detail/en/c/1297809/ (Erişim Tarihi: 05.11.2024).
  • FAO. (2024). Retrieved from: https://www.fao.org/faostat/en/#data/QCL (Erişim Tarihi: 05.11.2024)
  • Gaytancıoğlu, O., & Yılmaz, F. (2024). Sustainable paddy farming in Edirne: Evaluating the impacts of excessive fertilizer and pesticide use. Sustainability, 16(17), 7814. https://doi.org/10.3390/su16177814
  • Hasan, A., Tabassum, B., Hashim, M., & Khan, N. (2024). Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria, 3(2), 59-75. https://doi.org/10.3390/bacteria3020005
  • Housh, A. B., Powell, G., Scott, S., Anstaett, A., Gerheart, A., Benoit, M., ... & Ferrieri, R. A. (2021). Functional mutants of Azospirillum brasilense elicit beneficial physiological and metabolic responses in Zea mays contributing to increased host iron assimilation. The ISME Journal, 15(5), 1505-1522. https://doi.org/10.1038/s41396-020-00866-x
  • Housh, A. B., Waller, S., Sopko, S., Powell, A., Benoit, M., Wilder, S. L., ... & Ferrieri, R. A. (2022). Azospirillum brasilense bacteria promotes Mn²⁺ uptake in maize with benefits to leaf photosynthesis. Microorganisms, 10(7), 1290. https://doi.org/10.3390/microorganisms10071290
  • Ibrahim, İ. R. (2018). Yapraktan hümik asit ve deniz yosunu ekstraktı uygulamasının plastik sera koşullarında hıyarın (Cucumis sativus L.) büyümesi ve verimi üzerine etkisi (Master's thesis). Bingöl Üniversitesi, Bingöl.
  • Jain, R., Mathur, A., Singh, D., & Rohillad, A. (2024). Fostering sustainable plant growth with rhizozpheric allies: A review. Asian Biotechnology & Development Review, 26(1).
  • Khan, N., Bano, A. M., & Babar, A. (2020). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PloS One, 15(4), e0231426. https://doi.org/10.1371/journal.pone.0232926
  • Koul, V., Tripathi, C., Adholeya, A., & Kochar, M. (2015). Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM. Research in Microbiology, 166(3), 174-185. https://doi.org/10.1016/j.resmic.2015.02.003
  • Kumar, V., Eid, E. M., Al-Bakre, D. A., Abdallah, S. M., Širić, I., Andabaka, Ž., ... & Choi, K. S. (2022). Combined use of sewage sludge and plant growth-promoting rhizobia improves germination, biochemical response and yield of ridge gourd (Luffa acutangula (L.) Roxb.) under field conditions. Agriculture, 12(2), 173. https://doi.org/10.3390/agriculture12020173
  • Melini, F., Melini, V., Luziatelli, F., Abou Jaoudé, R., Ficca, A. G., & Ruzzi, M. (2023). Effect of microbial plant biostimulants on fruit and vegetable quality: Current research lines and future perspectives. Frontiers in Plant Science, 14, 1251544. https://doi.org/10.3389/fpls.2023.1251544
  • Perisoara, A., Marinas, I. C., Geana, E. I., Constantin, M., Angheloiu, M., Pirvu, L., & Cristea, S. (2022). Phytostimulation and synergistic antipathogenic effect of Tagetes erecta extract in presence of rhizobacteria. Horticulturae, 8(9), 779. https://doi.org/10.3390/horticulturae8090779
  • Radwan, A. M., Ahmed, E. A., Donia, A. M., Mustafa, A. E., & Balah, M. A. (2023). Priming of Citrullus lanatus var. Colocynthoides seeds in seaweed extract improved seed germination, plant growth and performance under salinity conditions. Scientific Reports, 13(1), 11884. https://doi.org/10.1038/s41598-023-38711-8
  • Rocha, R., Lopes, T., Fidalgo, C., Alves, A., Cardoso, P., & Figueira, E. (2022). Bacteria associated with the roots of common bean (Phaseolus vulgaris L.) at different development stages: Diversity and plant growth promotion. Microorganisms, 11(1), 57. https://doi.org/10.3390/microorganisms11010057
  • Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Frontiers in Plant Science, 11, 40. https://doi.org/10.3389/fpls.2020.00040
  • Scott, S., Housh, A., Powell, G., Anstaett, A., Gerheart, A., Benoit, M., ... & Ferrieri, R. (2020). Crop yield, ferritin and Fe (II) boosted by Azospirillum brasilense (HM053) in corn. Agronomy, 10(3), 394. https://doi.org/10.3390/agronomy10030394
  • Shahrajabian, M. H., Petropoulos, S. A., & Sun, W. (2023). Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, 9(2), 193. https://doi.org/10.3390/horticulturae9020193
  • Shil, S., Adhikary, P., & Sachan, M. S. (2023). Frontiers in crop improvement. Volume 11, Special Issue I, 521
  • Silva, L. I. D., Oliveira, I. P. D., Jesus, E. D. C., Pereira, M. C., Pasqual, M., Araújo, R. C. D., & Dória, J. (2022). Fertilizer of the future: Beneficial bacteria promote strawberry growth and yield and may reduce the need for chemical fertilizer. Agronomy, 12(10), 2465. https://doi.org/10.3390/agronomy12102465
  • Tahmaz, H., Yüksel Küskü, D., & Kunter, B. (2024). Asmada deniz yosunu ve maya uygulamalarının biyostimulant ve tuz stresine karşı etkilerinin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29 (2), 569-588. https://doi.org/10.37908/mkutbd.1472846
  • Tejasree, A., Mirza, A., & Joka, V. S. (2024). Deciphering nature’s secret of seaweed extract as a biostimulant on horticultural crops: A review. Journal of Experimental Agriculture International, 46(6), 417-427. https://doi.org/10.9734/jeai/2024/v46i62494
  • TÜİK. (2024). Retrieved from: https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (Erişim Tarihi: 05.11.2024)
  • Vendruscolo, E. P., Campos, L. F. C., Seleguini, A., De Lima, S. F., Bortolheiro, F. P. D. A. P., Martins, M. B., ... & De Souza, M. I. (2023). Azospirillum brasilense and nitrogen fertilizer affect the development and quality of cantaloupe melons. Journal of Plant Growth Regulation, 42(9), 5452-5460. https://doi.org/10.1007/s00344-023-10928-x
  • WHO. (2024). Retrieved from: https://iris.who.int/handle/10665/377755 (Erişim Tarihi: 05.11.2024)
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sebze Yetiştirme ve Islahı
Bölüm Araştırma Makaleleri
Yazarlar

Yadigar Leyla Doğan 0000-0002-7404-5653

Özlem Üzal 0000-0002-1538-820X

Ömer Öztaş 0000-0001-9034-5675

Fikret Yaşar 0000-0001-6598-8580

Erken Görünüm Tarihi 17 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 3 Ocak 2025
Kabul Tarihi 18 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 1

Kaynak Göster

APA Doğan, Y. L., Üzal, Ö., Öztaş, Ö., Yaşar, F. (2025). Karpuz (Citrullus lanatus L.) fidesi gelişim parametreleri ve klorofil içeriği üzerine Azospirillum lipoferum ve deniz yosunu uygulamalarının etkileri. Harran Tarım Ve Gıda Bilimleri Dergisi, 29(1), 85-95. https://doi.org/10.29050/harranziraat.1612966

Derginin Tarandığı İndeksler

13435  19617   22065  13436  1344013445  13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.