Araştırma Makalesi
BibTex RIS Kaynak Göster

Bıldırcınlarda Karkas Parça Randımanı ve Et Kalite Özellikleri arası Fenotopik Korelasyonlar

Yıl 2022, , 7 - 14, 01.07.2022
https://doi.org/10.29185/hayuretim.1011729

Öz

Amaç: Bu çalışmanın amacı japon bıldırcınlarında karkas parça randımanları (göğüs ve but kası randımanı) ve et kalite özellikleri (pHu, parlaklık, kırmızılık, sarılık, chroma, hue, çözdürme kaybı, pişirme kaybı, su tutma kapasitesi ve sertlik) arası fenotipik korelasyonları saptamaktır.
Materyal ve Metot: Çalışma toplam 130 adet karışık eşeye sahip japon bıldırcını üzerinde yürütülmüştür. Kesimden 24 saat sonra, et kalite özelliklerini saptamak amacıyla, sağ göğüs kasında pHu ve renk ölçümleri gerçekleştirilmiştir.
Bulgular: Ortalama göğüs ve but kası randımanları sırası ile %24.19 ve %14.41 olarak saptanmıştır. Bıldırcın göğüs etinde karkas parça randımanları ve et kalite özellikleri için önemli fenotipik korelasyonlar belirlenmiştir. pHu ile parlaklık (-0.193), sarılık (-0.288), chroma (-0.266) ve çözdürme kaybı (-0.248) için önemli (p<0.05) negatif fenotipik korelasyonlar belirlenirken; pHu’nun kırmızılık, hue, su tutma kapasitesi ve sertlik ile arasındaki ilişkilerin önemsiz olduğu saptanmıştır.
Sonuç: Çalışmada, pHu ile parlaklık arasında belirlenen önemli negatif fenotipik korelasyon, bıldırcınlarda göğüs eti parlaklığı yönünde yapılacak seleksiyonun son pH’yı etkileyerek kalite özelliklerinde iyileşmeye neden olabileceğini ve bu sonuçların et kalite kusurlarının azaltılmasında kullanılabileceğini göstermektedir.

Kaynakça

  • Alkan S, Karabağ K, Galiç A, Karslı T, Balcıoğlu M S. 2010. Determination of body weight and some carcass traits in japanese quails (coturnix coturnix japonica) of different lines. Kafkas Universitesi Veteriner Fakültesi Dergisi 16 (2): 277-280.
  • Andersen H J, Oksbjerg N, Young J F, Therkildsen M. 2005. Feeding and meat quality a future approach. Meat Science (70) 543–554.
  • Barbut S. 2002. Poultry products processing: an industry guide. Department of Animal and Poultry Science University of Guelph, CRC Press LLC.
  • Barbut S, Zhang L, Marcone M. 2005. Effects of pale, normal, and dark chicken breast meat on microstructure, extractable proteins, and cooking of marinated fillets. Poultry Science 84:797–802.
  • Barbut S, Sosnicki A A, Lonergan S M, Knapp T, Ciobanu D C, Gatcliffe L J, Huff-Lonergan E, Wilson E W. 2008. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Science 79, 46–63.
  • Beauclercq S, Nadal-Desbarats L, Hennequet-Antier C, Collin A, Tesseraud S, Bourin M,§ Le Bihan-Duval E, and Berri C. 2016. Serum and muscle metabolomics for the prediction of ultimate ph, a key factor for chicken-meat quality. J. Proteome Res., 15, 1168−1178.
  • Berri C, Wacrenier N, Millet N, and Le Bihan-Duval E. 2001. Effect of selection for improved body composition on muscle and meat characteristics of broilers from experimental and commercial lines. Poultry Science 80:833–838.
  • Berri C, Debut M, Santé-Lhoutellier V, Arnould C, Boutten B, Sellier N, Baéza E, Jehl N, Jégo Y, Duclos M J & Le Bihan-Duval E. 2005. Variations in chicken breast meat quality: implications of struggle and muscle glycogen content at death. British Poultry Science Vol.46, pp. 572–579.
  • Berri C, Le Bihan-Duval E, Debut M, Santé-Lhoutellier V, Baéza E, Gigaud V, Jégo Y and Duclos M J. 2007. Consequence of muscle hypertrophy on Pectoralis major characteristics and breast meat quality of broiler chickens. http://jas.fass.org/content/early/2007/04/12/jas.2006-398.citation.
  • Bohrer B M. 2018. Correlation of chicken breast quality and sensory attributes with chicken thigh quality and sensory attributes. Canadian. J. Animal Science 99: 465–474.
  • Boulianne M, and King A J. 1995. Biochemical and color characteristics of skinless boneless pale chicken breast. Poultry Science 74:1693–1698.
  • Carvalho R H, Soares A L, Honorato D C B, Guarnieri P D, Pedrão M R, Paião F G, Oba A, Ida I E, Shimokomaki M. 2014. The incidence of pale, soft, and exudative (PSE) turkey meat at a Brazilian commercial plant and the functional properties in its meat product. LWT– Food Science Technology, 59, pp. 883-888.
  • DeCarlo L. 1997. On the meaning and use of kurtosis. On the meaning and use of kurtosis. Psy. methods, 2(3), 292.
  • FAOSTAT, 2021. http://www.fao.org/faostat/en/#data/QCL.
  • Fletcher D L. 2002. Poultry meat quality. World’s Poultry Science Journal, Vol. 58, June.
  • Gaya L G, Mourão G B, Ferraz J B S, Mattos E C, Costa A M M A, Filho T M, Rosa A F, Felício A M, Eler J P. 2011. Estimates of heritability and genetic correlations for meat quality traits in broilers. Sci. Agric., v.68, n.6, p.620-625.
  • Genchev, Mihaylova G, Ribarski S, Pavlov A, Kabakchiev M. 2008. MEAT quality and composition in japanese quails. Trakia Journal of Sciences, Vol.6, No. 4 , pp 72-82.
  • Gevrekçi Y, Oğuz İ, Akşit M, Önenç A, Özdemir D, Altan Ö. 2009. Heritability and variance component estimates of meat quality in japanese quail (coturnix coturnix japonica). Turk. J. Vet. Anim. Sci.; 33(2): 89-94.
  • Güler H C, Demir N, Kurbal Ö F, Babacanoğlu E. 2019. Kesim öncesi açlık stresine maruz bırakılan bıldırcınlarda karma yeme humik asit ilavesinin karkas parça randımanı, et kalite özellikleri ve kan parametreleri üzerine etkileri. J. Anim. Prod., 59 (2): 15-23.
  • Havenstein G B, Ferket P R & Qureshi M A. 2003a. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 an 2001 broiler diets. Poultry Science 82, 1500–1508.
  • Havenstein G B, Ferket P R & Qureshi M A. 2003b. Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science 82, 1509–1518.
  • Honikel K O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Science 49( 4): 447– 57.
  • Karcher D M and Mench J A. 2018. Overview of commercial poultry production systems and their main welfare challenges. Advances in Poultry Welfare, Pages 3-25.
  • Kijowski J, and Niewiarowicz A. 1978. Emulsifying properties of proteins and meat from broiler breast muscles as affected by their initial pH values. J. Food Technol. 13:451–459.
  • Le Bihan-Duval E, Millet N, and Remignon H.1999. Broiler Meat Quality: Effect of Selection for Increased Carcass Quality and Estimates of Genetic Parameters. Poultry Science 78:822–826.
  • Le Bihan-Duval E, Berri C, Baeza E, Millet N, Beaumont C. 2001. Estimation of the genetic parameters of meat characteristics and of their genetic correlations with growth and body composition in an experimental broiler line, Poultry Science 80, 839-843.
  • Le Bihan-Duval E, Berri C, Baéza E, Santé V, Astruc T, Rémignon H, Le Pottier G, Bentley J Beaumont C, Fernandez X. 2003. Genetic parameters of meat technological quality traits in a grand-parental commercial line of turkey. Genet. Sel. Evol. 35 623-635.
  • Le Bihan-Duval E. 2004. Genetic variability within and between breeds of poultry technological meat quality. World's Poultry Science Journal. Vol. 60, Issue, pp. 331 – 340.
  • Le Bihan-Duval E, Debut M, Berri C, Sellier N, Santé-Lhoutellier V, Jégo Y and Beaumont C. 2008. Chicken meat quality: genetic variability and relationship with growth and muscle characteristics. BMC Genetics. 9:53.
  • Li P, Wang T, Mao Y, Zhang Y, Niu L, Liang R, Zhu L, and Luo X. 2014. Effect of ultimate ph on postmortem myofibrillar protein degradation and meat quality characteristics of chinese yellow crossbreed cattle. The Scientific World Journal, Article ID 174253, 8 pages.
  • Lukanov H, Genchev A, Penchev I, Penkov D. 2018. Meat composition and quality in male japanese quails from heavy pharaoh line. Trakia Journal of Sciences, No 4, pp 327-333.
  • MacDougall D B. 1982. Changes in the color and opacity of meat. Food Chemistry, 9:75–88.
  • Narinc D, Aksoy T, Karaman E, Aygun A, Firat M Z, and Uslu M K. 2013. Japanese quail meat quality: Characteristics, heritabilities, and genetic correlations with some slaughter traits. Poultry Science 92 :1735–1744.
  • Narinç D, Genç B A. 2021. Genetic parameter estimates of fear, growth, and carcass characteristics in Japanese quail. Turk J Vet Anim Sci. 45: 272-280.
  • Nasirifar E, Rezvannejad E, Maleki M & Sami M. 2021. The impact of differential expression of the pectoral muscle proteome in two groups of Japanese quail with different growth rates on meat quality. British .Poultry Science, Vol. 62, No. 1, 38–45.
  • Nasr M A F, Ali El-Shimaa M R, Hussein M A. 2017. Performance, carcass traits, meat quality and amino acid profile of different Japanese quails strains. J Food Science Technology 54 (13):4189–4196.
  • National Research Council, 1994. Nutrient requirements of poultry (9th rev. ed.), National Academy Press, Washington, DC.
  • Obanor F O. 2002. Biochemical basis of the effect of pre-slaughter stress and post-slaughter processing conditions on meat tenderness [PhD dissertation], Lincoln University, Christchurch, New Zealand.
  • Oğuz İ, Akşit M, Önenç A, Gevrekçi Y, Özdemir D, Altan Ö. 2004. Genetic variability of meat quality characteristics in Japanese quail (Coturnix coturnix japonica). Arch. Geflügelk., 68 (4), 176 – 181.
  • Papinaho P A and Fletcher D L. 1996,.The effect of stunning amperage and deboning time an early rigor development and breast meat quality of broilers. Poultry Science 75: 672- 76.
  • Pearson E S, D'agostino R B and Bowman K O. 1977. Tests for departure from normality: comparison of powers. Biometrika, 64, 231-246.
  • Qiao M, Fletcher D L, Smith D P and Northcutt J K, 2002. Effects of raw broiler breast meat color variation on marination and cooked meat quality. Poultry Science 81:276–280.
  • Remignon H , Mills A D, Guemene D, Desrosiers V, Garreau-Mills M, Marche M, Marche G. 1998. Meat quality traits and muscle characteristics in high or low fear lines of Japanese quails (Coturnix japonica) subjected to acute stress. Br Poultry Science Jul; 39 (3):372-8.
  • Sakia R M. 1992. The Box-Cox transformation technique: a review. The Statistician 41, pp. 169-178.
  • Santhi D and Kalaikannan A. 2017. Japanese quail (Coturnix coturnix japonica) meat: characteristics and value addition. World's Poultry Science Journal, Vol. 73.
  • SAS Institute, 2020. SAS Institute Inc., Cary, NC.
  • Shapiro S S and Wilk M B. 1965. An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.
  • WHO. 2015. Links between processed meat and colourectal cancer. Available at: http://www.who.int/mediacentre/news/statements/2015/processed-meat-cancer/en/.
  • Wideman N, O'bryan C A and Crandall P G. 2016. Factors affecting poultry meat colour and consumer preferences - A review World's Poultry Science Journal, Vol. 72, I: 2, 353 – 366.
  • Woelfel R L, Owens C M, Hirschler E M, Martinez-Dawson R, Sams A R 2002. The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poultry Science 81, (4) 579– 584.
  • Wood J D, Enser M, Fisher A V, Nute G R, Sheard P R, Richardson R I, Hughes S I, Whittington F M. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Science (78) 343–358.
  • Zerehdaran S, Lotfi E & Rasouli Z. 2013. Genetic evaluation of meat quality traits and their correlation with growth and carcase composition in Japanese quail. British Poultry Science Vol. 53, Number 6, 756—762.

Phenotypic Correlations between Carcass Part Yields and Meat Quality Characteristics in Quails

Yıl 2022, , 7 - 14, 01.07.2022
https://doi.org/10.29185/hayuretim.1011729

Öz

Objective: This study aimed to determine phenotypic correlations between carcass part yields (breast and thigh yield) and meat quality characteristics (pHu, lightness, redness, yellowness, chroma, hue, thawing loss, cooking loss, water holding capacity, and texture) in Japanese quails.
Material and Methods: This study was carried out on a total of 130 Japanese quails with mixed sexes. Twenty-four hours after slaughter, pHu and color measurements were performed in the right breast muscle to determine meat quality characteristics.
Results: Mean breast and thigh muscle yields were determined as 24.19% and 14.41%, respectively. Significant phenotypic correlations were found for carcass part yields and meat quality characteristics in quail meat. While determined negative significant (p<0.05) phenotypic correlations for pHu and lightness (-0.193), yellowness (-0.288), chroma (-0.266), and thawing loss (-0.248); pHu’s relationships with redness, hue, water holding capacity and, texture were insignificant.
Conclusion: In this study, the significant negative phenotypic correlation determined between pHu and lightness shows that selection for breast meat lightness in quails can affect the ultimate pH and lead to an improvement in quality characteristics, and this situation can be used to reduce meat quality defects.

Kaynakça

  • Alkan S, Karabağ K, Galiç A, Karslı T, Balcıoğlu M S. 2010. Determination of body weight and some carcass traits in japanese quails (coturnix coturnix japonica) of different lines. Kafkas Universitesi Veteriner Fakültesi Dergisi 16 (2): 277-280.
  • Andersen H J, Oksbjerg N, Young J F, Therkildsen M. 2005. Feeding and meat quality a future approach. Meat Science (70) 543–554.
  • Barbut S. 2002. Poultry products processing: an industry guide. Department of Animal and Poultry Science University of Guelph, CRC Press LLC.
  • Barbut S, Zhang L, Marcone M. 2005. Effects of pale, normal, and dark chicken breast meat on microstructure, extractable proteins, and cooking of marinated fillets. Poultry Science 84:797–802.
  • Barbut S, Sosnicki A A, Lonergan S M, Knapp T, Ciobanu D C, Gatcliffe L J, Huff-Lonergan E, Wilson E W. 2008. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Science 79, 46–63.
  • Beauclercq S, Nadal-Desbarats L, Hennequet-Antier C, Collin A, Tesseraud S, Bourin M,§ Le Bihan-Duval E, and Berri C. 2016. Serum and muscle metabolomics for the prediction of ultimate ph, a key factor for chicken-meat quality. J. Proteome Res., 15, 1168−1178.
  • Berri C, Wacrenier N, Millet N, and Le Bihan-Duval E. 2001. Effect of selection for improved body composition on muscle and meat characteristics of broilers from experimental and commercial lines. Poultry Science 80:833–838.
  • Berri C, Debut M, Santé-Lhoutellier V, Arnould C, Boutten B, Sellier N, Baéza E, Jehl N, Jégo Y, Duclos M J & Le Bihan-Duval E. 2005. Variations in chicken breast meat quality: implications of struggle and muscle glycogen content at death. British Poultry Science Vol.46, pp. 572–579.
  • Berri C, Le Bihan-Duval E, Debut M, Santé-Lhoutellier V, Baéza E, Gigaud V, Jégo Y and Duclos M J. 2007. Consequence of muscle hypertrophy on Pectoralis major characteristics and breast meat quality of broiler chickens. http://jas.fass.org/content/early/2007/04/12/jas.2006-398.citation.
  • Bohrer B M. 2018. Correlation of chicken breast quality and sensory attributes with chicken thigh quality and sensory attributes. Canadian. J. Animal Science 99: 465–474.
  • Boulianne M, and King A J. 1995. Biochemical and color characteristics of skinless boneless pale chicken breast. Poultry Science 74:1693–1698.
  • Carvalho R H, Soares A L, Honorato D C B, Guarnieri P D, Pedrão M R, Paião F G, Oba A, Ida I E, Shimokomaki M. 2014. The incidence of pale, soft, and exudative (PSE) turkey meat at a Brazilian commercial plant and the functional properties in its meat product. LWT– Food Science Technology, 59, pp. 883-888.
  • DeCarlo L. 1997. On the meaning and use of kurtosis. On the meaning and use of kurtosis. Psy. methods, 2(3), 292.
  • FAOSTAT, 2021. http://www.fao.org/faostat/en/#data/QCL.
  • Fletcher D L. 2002. Poultry meat quality. World’s Poultry Science Journal, Vol. 58, June.
  • Gaya L G, Mourão G B, Ferraz J B S, Mattos E C, Costa A M M A, Filho T M, Rosa A F, Felício A M, Eler J P. 2011. Estimates of heritability and genetic correlations for meat quality traits in broilers. Sci. Agric., v.68, n.6, p.620-625.
  • Genchev, Mihaylova G, Ribarski S, Pavlov A, Kabakchiev M. 2008. MEAT quality and composition in japanese quails. Trakia Journal of Sciences, Vol.6, No. 4 , pp 72-82.
  • Gevrekçi Y, Oğuz İ, Akşit M, Önenç A, Özdemir D, Altan Ö. 2009. Heritability and variance component estimates of meat quality in japanese quail (coturnix coturnix japonica). Turk. J. Vet. Anim. Sci.; 33(2): 89-94.
  • Güler H C, Demir N, Kurbal Ö F, Babacanoğlu E. 2019. Kesim öncesi açlık stresine maruz bırakılan bıldırcınlarda karma yeme humik asit ilavesinin karkas parça randımanı, et kalite özellikleri ve kan parametreleri üzerine etkileri. J. Anim. Prod., 59 (2): 15-23.
  • Havenstein G B, Ferket P R & Qureshi M A. 2003a. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 an 2001 broiler diets. Poultry Science 82, 1500–1508.
  • Havenstein G B, Ferket P R & Qureshi M A. 2003b. Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science 82, 1509–1518.
  • Honikel K O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Science 49( 4): 447– 57.
  • Karcher D M and Mench J A. 2018. Overview of commercial poultry production systems and their main welfare challenges. Advances in Poultry Welfare, Pages 3-25.
  • Kijowski J, and Niewiarowicz A. 1978. Emulsifying properties of proteins and meat from broiler breast muscles as affected by their initial pH values. J. Food Technol. 13:451–459.
  • Le Bihan-Duval E, Millet N, and Remignon H.1999. Broiler Meat Quality: Effect of Selection for Increased Carcass Quality and Estimates of Genetic Parameters. Poultry Science 78:822–826.
  • Le Bihan-Duval E, Berri C, Baeza E, Millet N, Beaumont C. 2001. Estimation of the genetic parameters of meat characteristics and of their genetic correlations with growth and body composition in an experimental broiler line, Poultry Science 80, 839-843.
  • Le Bihan-Duval E, Berri C, Baéza E, Santé V, Astruc T, Rémignon H, Le Pottier G, Bentley J Beaumont C, Fernandez X. 2003. Genetic parameters of meat technological quality traits in a grand-parental commercial line of turkey. Genet. Sel. Evol. 35 623-635.
  • Le Bihan-Duval E. 2004. Genetic variability within and between breeds of poultry technological meat quality. World's Poultry Science Journal. Vol. 60, Issue, pp. 331 – 340.
  • Le Bihan-Duval E, Debut M, Berri C, Sellier N, Santé-Lhoutellier V, Jégo Y and Beaumont C. 2008. Chicken meat quality: genetic variability and relationship with growth and muscle characteristics. BMC Genetics. 9:53.
  • Li P, Wang T, Mao Y, Zhang Y, Niu L, Liang R, Zhu L, and Luo X. 2014. Effect of ultimate ph on postmortem myofibrillar protein degradation and meat quality characteristics of chinese yellow crossbreed cattle. The Scientific World Journal, Article ID 174253, 8 pages.
  • Lukanov H, Genchev A, Penchev I, Penkov D. 2018. Meat composition and quality in male japanese quails from heavy pharaoh line. Trakia Journal of Sciences, No 4, pp 327-333.
  • MacDougall D B. 1982. Changes in the color and opacity of meat. Food Chemistry, 9:75–88.
  • Narinc D, Aksoy T, Karaman E, Aygun A, Firat M Z, and Uslu M K. 2013. Japanese quail meat quality: Characteristics, heritabilities, and genetic correlations with some slaughter traits. Poultry Science 92 :1735–1744.
  • Narinç D, Genç B A. 2021. Genetic parameter estimates of fear, growth, and carcass characteristics in Japanese quail. Turk J Vet Anim Sci. 45: 272-280.
  • Nasirifar E, Rezvannejad E, Maleki M & Sami M. 2021. The impact of differential expression of the pectoral muscle proteome in two groups of Japanese quail with different growth rates on meat quality. British .Poultry Science, Vol. 62, No. 1, 38–45.
  • Nasr M A F, Ali El-Shimaa M R, Hussein M A. 2017. Performance, carcass traits, meat quality and amino acid profile of different Japanese quails strains. J Food Science Technology 54 (13):4189–4196.
  • National Research Council, 1994. Nutrient requirements of poultry (9th rev. ed.), National Academy Press, Washington, DC.
  • Obanor F O. 2002. Biochemical basis of the effect of pre-slaughter stress and post-slaughter processing conditions on meat tenderness [PhD dissertation], Lincoln University, Christchurch, New Zealand.
  • Oğuz İ, Akşit M, Önenç A, Gevrekçi Y, Özdemir D, Altan Ö. 2004. Genetic variability of meat quality characteristics in Japanese quail (Coturnix coturnix japonica). Arch. Geflügelk., 68 (4), 176 – 181.
  • Papinaho P A and Fletcher D L. 1996,.The effect of stunning amperage and deboning time an early rigor development and breast meat quality of broilers. Poultry Science 75: 672- 76.
  • Pearson E S, D'agostino R B and Bowman K O. 1977. Tests for departure from normality: comparison of powers. Biometrika, 64, 231-246.
  • Qiao M, Fletcher D L, Smith D P and Northcutt J K, 2002. Effects of raw broiler breast meat color variation on marination and cooked meat quality. Poultry Science 81:276–280.
  • Remignon H , Mills A D, Guemene D, Desrosiers V, Garreau-Mills M, Marche M, Marche G. 1998. Meat quality traits and muscle characteristics in high or low fear lines of Japanese quails (Coturnix japonica) subjected to acute stress. Br Poultry Science Jul; 39 (3):372-8.
  • Sakia R M. 1992. The Box-Cox transformation technique: a review. The Statistician 41, pp. 169-178.
  • Santhi D and Kalaikannan A. 2017. Japanese quail (Coturnix coturnix japonica) meat: characteristics and value addition. World's Poultry Science Journal, Vol. 73.
  • SAS Institute, 2020. SAS Institute Inc., Cary, NC.
  • Shapiro S S and Wilk M B. 1965. An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.
  • WHO. 2015. Links between processed meat and colourectal cancer. Available at: http://www.who.int/mediacentre/news/statements/2015/processed-meat-cancer/en/.
  • Wideman N, O'bryan C A and Crandall P G. 2016. Factors affecting poultry meat colour and consumer preferences - A review World's Poultry Science Journal, Vol. 72, I: 2, 353 – 366.
  • Woelfel R L, Owens C M, Hirschler E M, Martinez-Dawson R, Sams A R 2002. The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poultry Science 81, (4) 579– 584.
  • Wood J D, Enser M, Fisher A V, Nute G R, Sheard P R, Richardson R I, Hughes S I, Whittington F M. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Science (78) 343–358.
  • Zerehdaran S, Lotfi E & Rasouli Z. 2013. Genetic evaluation of meat quality traits and their correlation with growth and carcase composition in Japanese quail. British Poultry Science Vol. 53, Number 6, 756—762.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvansal Üretim (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Hüseyin Cem Güler 0000-0002-1527-1562

Yayımlanma Tarihi 1 Temmuz 2022
Gönderilme Tarihi 24 Ekim 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Güler, H. C. (2022). Phenotypic Correlations between Carcass Part Yields and Meat Quality Characteristics in Quails. Journal of Animal Production, 63(1), 7-14. https://doi.org/10.29185/hayuretim.1011729


26405

Creative Commons License Journal of Animal Production is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


26407 26406 26408   26409  26410263992641126412  26413   26414 26415