Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Substitute Feeding On Drone Larvae Production Performance in Honey Bee Colonies

Yıl 2022, , 84 - 89, 30.12.2022
https://doi.org/10.29185/hayuretim.1184151

Öz

Objective: In recent years, there has been an increase in interest in functional honey bee products. Due of their high nutritional content, drone larvae (Apilarnil) is capable of a wide range of biological activities. In this study, we compared the individual and total weights of drone larvae obtained from colonies fed with different substitute foods.

Material and Methods: 12 out of 100 colonies comparable in queen age, brood status and colony size were used as material. The colonies were divided into three groups: control, sugar syrup and pollen substitute diet. Each group underwent three replications.

Results: There was no statistically significant difference in the weight averages of individual drone larvae taken from colonies (p>0.05). The difference in the average weight of total drone larvae collected between the groups was statistically significant (p<0.05). The average weight of total drone larvae produced by the colonies was 23.80 g in the control group, 34.70 g in the honey substitute group, and 44.42 g in the pollen substitute group.

Conclusion: In this research, the high average weight of total drone larvae produced in colonies that fed with pollen substitute feed showed that the use of appropriate substitute feeds in colony feeding management in beekeeping practices promotes drone brood production.

Kaynakça

  • Altan Ö, Yücel B, Açikgöz Z, Şeremet Ç, Kösoğlu M, Turgan, N ve Özgönül, A M. 2013. Apilarnil reduces fear and advances sexual development in male broilers but has no effect on growth. British poultry science, 54(3): 355-361.
  • Avni D, Dag A, Shafir S. 2009. The effect of surface area of pollen patties fed to honey bee (Apis mellifera) colonies on their consumption, brood production and honey yields. Journal of apicultural research 48(1):23-28.
  • Bartkiene E, Lele V, Sakiene V, Zavistanaviciute P, Zokaityte E, Dauksiene A, ve Ruzauskas M. 2020. Variations of the antimicrobial, antioxidant, sensory attributes and biogenic amines content in Lithuania-derived bee products. LWT 118:108793.
  • Brodschneider R, Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie, 41(3):278-294.
  • Brown M J, Dicks L V, Paxton R J, Baldock K C, Barron A B, Chauzat M P, Li J. 2016. A horizon scan of future threats and opportunities for pollinators and pollination. Peer J 4: e2249.
  • Cengiz M, Yazıcı K, Arslan S. 2019. The effect of the supplemental feeding of queen rearing colonies on the reproductive characteristics of queen bees (Apis mellifera L.) reared from egg and different old of larvae. Kafkas Universitesi Veteriner Fakultesi Dergisi, 25.
  • Calderone N W, Kuenen L P S. 2003. Differential tending of worker and drone larvae of the honey bee, Apis mellifera, during the 60 hours prior to cell capping. Apidologie, 34(6): 543-552.
  • Doğanyiğit Z, Okan A, Kaymak E, Pandır D, Silici S. 2020. Investigation of protective effects of apilarnil against lipopolysaccharide induced liver injury in rats via TLR 4/HMGB-1/NF-κB pathway. Biomedicine & Pharmacotherapy 125:109967.
  • Doğanyi̇ği̇t Z, Si̇li̇ci̇ S, Kaymak E, Okan A, Akin A T, Pandir D. 2019. Api̇larni̇li̇n'i̇n erkek sıçanlarda li̇popoli̇sakkari̇te (lps) bağlı testi̇s toksi̇si̇tesi̇ne karşı koruyucu rolünün beli̇rlenmesi̇. Bozok Tıp Dergisi, 9(2):146-154.
  • Erdem B, Özkök A. 2018. Can food supplement produced from apilarnil be an alternative to testosterone replacement therapy? Hacettepe Journal of Biology and Chemistry 45(4): 635-638.
  • Goodwin, R.M., Ten Houten, A. ve Perry, J.H. 1994. Effect of feeding pollen substitutes to honey bee colonies used for kiwifruit pollination and honey production. New Zealand J. Crop. Hort 22: 459-462.
  • Hamamci M, Doganyigit Z, Silici S, Okan A, Kaymak E, Yilmaz S, Tokpinar A, İnan L.E. 2020. Apilarnil: a novel neuroprotective candidate. Acta Neurologica Taiwanica 29, (2): 33-45.
  • Hashem N M, Hassanein E M, Simal-Gandara J. 2021. Improving reproductive performance and health of mammals using honeybee products. Antioxidants 10(3):336.
  • Herbert E.W. 1992. Honey bee nutrition. In Graham J. M. (ed.), The hive and the honey bee. Dadant and Sons Hamilton IL. pp. 197-233.
  • Hladun K R, Smith B H, Mustard J A, Morton R R, Trumble J T 2012. Selenium toxicity to honey bee (Apis mellifera L.) pollinators: effects on behaviors and survival. PloS one, 7(4): e34137.
  • Hladun K R, Parker D R, Trumble J T 2015. Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: implications for plant performance and pollination. Journal of Chemical Ecology 41(4): 386-395.
  • Hrassnigg N, Crailsheim K, 2005. Differences in drone and worker physiology in honey bees (Apis mellifera). Apidologie 36(2): 255-277. Hroshovyi T, Dobrynchuk M, Pavliuk B, Chubka M, 2021. Pharmaceutical Sciences. Biological Sciences 2(63): 36.
  • Inandiklioglu N, Doganyigit Z, Okan A, Kayma E, Silici S. 2021. Nephroprotective effect of apilarnil in lipopolysaccharide-induced sepsis through TLR4/NF-κB signaling pathway. Life Sciences, 284:119875.
  • Isidorov VA, Bakier S, Stocki M, 2016. GC-MS investigation of the chemical composition of honey bee drone and queen larvae homogenate. Journal of Apicultural Science 60(1): 111-120.
  • Koç A U, Karacaoglu M. 2004. Effects of rearing season on the quality of queen honeybees (Apis mellifera L.) raised under the conditions of Aegean Region. Mellifera 4(7):34-37.
  • Kumar R, Mishra R C, Agrawal O P. 2013. Effect of feeding artificial diets to honey bees during dearth period under Panchkula (Haryana) conditions. Journal of Entomological Research, 37(1):41-46.
  • Martinello M, Mutinelli F 2021. Antioxidant activity in bee products: A review. Antioxidants, 10(1), 71.
  • Nainu F, Masyita A, Bahar M, Raihan M, Prova S R, Mitra S, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10(7):822.
  • Oskay, O. 2021. Effects of diet composition on consumption, live body weight and life span of worker honey bees. Applied Ecology and Environmental Research 19(6):4421-4430.
  • Pande R, Karnatak A K. 2014. Germinated pulses as a pollen substitute for dearth period management of honey bee colonies. Current Biotica 8(2):142-150. Pernal S F, Currie R W. 2000. Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31: 387-409. Saffari A M, Kevan P G, Atkinson J L. 2004. A promising pollen substitute for honey bees. American Bee Journal, 144(3):230-231.
  • Silici S. 2019. Bal arısı ürünleri ve apiterapi. Türk Tarım-Gıda Bilim ve Teknoloji dergisi 7(9):1249-1262.
  • Suleiman J B, Bakar A B A, Mohamed M. 2021. Review on bee products as potential protective and therapeutic agents in male reproductive impairment. Molecules, 26(11):3421.
  • Topal E, Strant M, Yücel B, Kösoğlu M, Margaoan R, Dayıoğlu M. 2018. Ana ve erkek arı larvalarının biyokimyasal özellikleri ve apiterapötik kullanımı. Hayvansal Üretim 59(2): 77-82.
  • Topal E, Yücel B, Tunca R İ, Kösoğlu M. 2019. Bal arılarında beslemenin koloni dinamiği üzerine etkileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9(4): 2398-2408.
  • Tunç M A, Cengiz M M, Yazıcı K, Turan M. 2020. The effects of supplemental feeding with sodium humate on the performance of honey bee colonies (Apis mellifera L.). Uludağ Arıcılık Dergisi 20(2), 181-188.
  • Yücel B, Acikgoz Z, Bayraktar H, Seremet C. (2011). The effects of apilarnil (drone bee larvae) administration on growth performance and secondary sex characteristics of male broilers. Journal of Animal and Veterinary Advances 10 (17): 2263-2266.

Bal Arısı Kolonilerinde Beslemenin Erkek Arı Larvası Üretim Performansı Üzerine Etkisi

Yıl 2022, , 84 - 89, 30.12.2022
https://doi.org/10.29185/hayuretim.1184151

Öz

Amaç: Son yıllarda fonksiyonel arı ürünlerine olan ilgi artmıştır. Yüksek besin içeriği sayesinde erkek arı larvası (Apilarnil) çok çeşitli biyolojik aktivitelere sahiptir. Bu çalışmada, farklı ikame yemler ile beslenen kolonilerden elde edilen erkek arı larvalarının bireysel ve toplam ağırlık miktarları karşılaştırılmıştır.


Materyal ve Metot: Ana arı yaşı, kuluçka durumu ve koloni boyutu bakımından karşılaştırılabilir 100 koloniden 12'si materyal olarak kullanılmıştır. Tesadüfi olarak 3 gruba ayrılan koloniler, kontrol grubu, şeker şurubu ile beslenen grup ve polen ikame yemi ile beslenen grup olarak ayrılmıştır. Her grupta 3 tekerrür gerçekleştirilmiştir.

Bulgular: Gruplara göre kolonilerden elde edilen bireysel erkek arı larvaları ağırlık ortalamaları arasında istatistiki olarak fark bulunamamıştır (p>0.05). Elde edilen toplam erkek arı larvası ağırlık ortalamalarında gruplar arası fark istatistiki olarak önemli çıkmıştır (p<0.05). Kolonilerin ürettiği toplam erkek arı larvalarının ortalama ağırlığı kontrol grubunda 23.80 gr, bal ikame grubunda 34.70 gr ve polen ikame grubunda 44.42 gr olarak belirlenmiştir.

Sonuç: Bu araştırmada; polen ikame yemi ile beslenen kolonilerde üretilen toplam erkek arı larvalarının ortalama ağırlığının yüksek olması, arıcılık uygulamalarında koloni besleme yönetiminde uygun ikame yemlerin kullanımının erkek arı kuluçka üretimini teşvik ettiğini göstermiştir.

Kaynakça

  • Altan Ö, Yücel B, Açikgöz Z, Şeremet Ç, Kösoğlu M, Turgan, N ve Özgönül, A M. 2013. Apilarnil reduces fear and advances sexual development in male broilers but has no effect on growth. British poultry science, 54(3): 355-361.
  • Avni D, Dag A, Shafir S. 2009. The effect of surface area of pollen patties fed to honey bee (Apis mellifera) colonies on their consumption, brood production and honey yields. Journal of apicultural research 48(1):23-28.
  • Bartkiene E, Lele V, Sakiene V, Zavistanaviciute P, Zokaityte E, Dauksiene A, ve Ruzauskas M. 2020. Variations of the antimicrobial, antioxidant, sensory attributes and biogenic amines content in Lithuania-derived bee products. LWT 118:108793.
  • Brodschneider R, Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie, 41(3):278-294.
  • Brown M J, Dicks L V, Paxton R J, Baldock K C, Barron A B, Chauzat M P, Li J. 2016. A horizon scan of future threats and opportunities for pollinators and pollination. Peer J 4: e2249.
  • Cengiz M, Yazıcı K, Arslan S. 2019. The effect of the supplemental feeding of queen rearing colonies on the reproductive characteristics of queen bees (Apis mellifera L.) reared from egg and different old of larvae. Kafkas Universitesi Veteriner Fakultesi Dergisi, 25.
  • Calderone N W, Kuenen L P S. 2003. Differential tending of worker and drone larvae of the honey bee, Apis mellifera, during the 60 hours prior to cell capping. Apidologie, 34(6): 543-552.
  • Doğanyiğit Z, Okan A, Kaymak E, Pandır D, Silici S. 2020. Investigation of protective effects of apilarnil against lipopolysaccharide induced liver injury in rats via TLR 4/HMGB-1/NF-κB pathway. Biomedicine & Pharmacotherapy 125:109967.
  • Doğanyi̇ği̇t Z, Si̇li̇ci̇ S, Kaymak E, Okan A, Akin A T, Pandir D. 2019. Api̇larni̇li̇n'i̇n erkek sıçanlarda li̇popoli̇sakkari̇te (lps) bağlı testi̇s toksi̇si̇tesi̇ne karşı koruyucu rolünün beli̇rlenmesi̇. Bozok Tıp Dergisi, 9(2):146-154.
  • Erdem B, Özkök A. 2018. Can food supplement produced from apilarnil be an alternative to testosterone replacement therapy? Hacettepe Journal of Biology and Chemistry 45(4): 635-638.
  • Goodwin, R.M., Ten Houten, A. ve Perry, J.H. 1994. Effect of feeding pollen substitutes to honey bee colonies used for kiwifruit pollination and honey production. New Zealand J. Crop. Hort 22: 459-462.
  • Hamamci M, Doganyigit Z, Silici S, Okan A, Kaymak E, Yilmaz S, Tokpinar A, İnan L.E. 2020. Apilarnil: a novel neuroprotective candidate. Acta Neurologica Taiwanica 29, (2): 33-45.
  • Hashem N M, Hassanein E M, Simal-Gandara J. 2021. Improving reproductive performance and health of mammals using honeybee products. Antioxidants 10(3):336.
  • Herbert E.W. 1992. Honey bee nutrition. In Graham J. M. (ed.), The hive and the honey bee. Dadant and Sons Hamilton IL. pp. 197-233.
  • Hladun K R, Smith B H, Mustard J A, Morton R R, Trumble J T 2012. Selenium toxicity to honey bee (Apis mellifera L.) pollinators: effects on behaviors and survival. PloS one, 7(4): e34137.
  • Hladun K R, Parker D R, Trumble J T 2015. Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: implications for plant performance and pollination. Journal of Chemical Ecology 41(4): 386-395.
  • Hrassnigg N, Crailsheim K, 2005. Differences in drone and worker physiology in honey bees (Apis mellifera). Apidologie 36(2): 255-277. Hroshovyi T, Dobrynchuk M, Pavliuk B, Chubka M, 2021. Pharmaceutical Sciences. Biological Sciences 2(63): 36.
  • Inandiklioglu N, Doganyigit Z, Okan A, Kayma E, Silici S. 2021. Nephroprotective effect of apilarnil in lipopolysaccharide-induced sepsis through TLR4/NF-κB signaling pathway. Life Sciences, 284:119875.
  • Isidorov VA, Bakier S, Stocki M, 2016. GC-MS investigation of the chemical composition of honey bee drone and queen larvae homogenate. Journal of Apicultural Science 60(1): 111-120.
  • Koç A U, Karacaoglu M. 2004. Effects of rearing season on the quality of queen honeybees (Apis mellifera L.) raised under the conditions of Aegean Region. Mellifera 4(7):34-37.
  • Kumar R, Mishra R C, Agrawal O P. 2013. Effect of feeding artificial diets to honey bees during dearth period under Panchkula (Haryana) conditions. Journal of Entomological Research, 37(1):41-46.
  • Martinello M, Mutinelli F 2021. Antioxidant activity in bee products: A review. Antioxidants, 10(1), 71.
  • Nainu F, Masyita A, Bahar M, Raihan M, Prova S R, Mitra S, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10(7):822.
  • Oskay, O. 2021. Effects of diet composition on consumption, live body weight and life span of worker honey bees. Applied Ecology and Environmental Research 19(6):4421-4430.
  • Pande R, Karnatak A K. 2014. Germinated pulses as a pollen substitute for dearth period management of honey bee colonies. Current Biotica 8(2):142-150. Pernal S F, Currie R W. 2000. Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.). Apidologie 31: 387-409. Saffari A M, Kevan P G, Atkinson J L. 2004. A promising pollen substitute for honey bees. American Bee Journal, 144(3):230-231.
  • Silici S. 2019. Bal arısı ürünleri ve apiterapi. Türk Tarım-Gıda Bilim ve Teknoloji dergisi 7(9):1249-1262.
  • Suleiman J B, Bakar A B A, Mohamed M. 2021. Review on bee products as potential protective and therapeutic agents in male reproductive impairment. Molecules, 26(11):3421.
  • Topal E, Strant M, Yücel B, Kösoğlu M, Margaoan R, Dayıoğlu M. 2018. Ana ve erkek arı larvalarının biyokimyasal özellikleri ve apiterapötik kullanımı. Hayvansal Üretim 59(2): 77-82.
  • Topal E, Yücel B, Tunca R İ, Kösoğlu M. 2019. Bal arılarında beslemenin koloni dinamiği üzerine etkileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9(4): 2398-2408.
  • Tunç M A, Cengiz M M, Yazıcı K, Turan M. 2020. The effects of supplemental feeding with sodium humate on the performance of honey bee colonies (Apis mellifera L.). Uludağ Arıcılık Dergisi 20(2), 181-188.
  • Yücel B, Acikgoz Z, Bayraktar H, Seremet C. (2011). The effects of apilarnil (drone bee larvae) administration on growth performance and secondary sex characteristics of male broilers. Journal of Animal and Veterinary Advances 10 (17): 2263-2266.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvansal Üretim (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Devrim Oskay 0000-0002-3410-2780

Ahmet Oğuz 0000-0002-3762-5931

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 4 Ekim 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Oskay, D., & Oğuz, A. (2022). The Effect of Substitute Feeding On Drone Larvae Production Performance in Honey Bee Colonies. Journal of Animal Production, 63(2), 84-89. https://doi.org/10.29185/hayuretim.1184151


26405

Creative Commons License Journal of Animal Production is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


26407 26406 26408   26409  26410263992641126412  26413   26414 26415