Derleme
BibTex RIS Kaynak Göster

Süt Sığırcılığında Yapay Zeka Teknolojisi: Bulanık Mantık ve Yapay Sinir Ağları

Yıl 2014, Cilt: 55 Sayı: 1, 39 - 45, 28.11.2014
https://doi.org/10.29185/hayuretim.363911

Öz



Yapay zeka, bilimsel araştırmalarda karmaşık problemlerin
çözümlenmesi amacıyla oluşturulan modellerde yaygın olarak kullanılmaktadır.
Tarımsal alanda, özellikle hayvansal veriler üzerinde anlamlı ilişkilerin
ortaya çıkarılması ve etkili hesaplama yöntemleri sayesinde araştırıcılara
büyük faydalar sağlamaktadır. Bu çalışmada yetiştirici ve araştırmacılara,
karar verme ve değerlendirme süreçlerinde kullanılan karar destek sistemleri
sayesinde büyük kolaylıklar sağlayan “bulanık mantık” ile oldukça başarılı verim
tahminleri ve çeşitli sınıflandırmalar gerçekleştiren “yapay sinir ağları”
yöntemleri tanıtılacak ve süt sığırcılığı alanında gerçekleştirilen
uygulamalara yer verilecektir. 



Kaynakça

  • Akkaptan, A. 2012. Hayvancılıkta bulanık mantık tabanlı karar destek sistemi. Yüksek Lisans Tezi, Ege Üniv. Fen Bil. Enst. İzmir.
  • Akıllı, A., Atıl, H., Kesenkaş, H. 2014. Çiğ süt kalite değerlendirmesinde bulanık mantık yaklaşımı. Kafkas Üniv. Vet. Fak. Derg. 20(2): 223-229.
  • Baykal, N., Beyan, T. 2004. Bulanık Mantık İlke ve Temelleri. Bıçaklar Kitabevi, Ankara.
  • Brown- Brandl,T. M., Jones, D. D., Woldt, W. E. 2005. Evaluating modelling techniques for cattle heat stress prediction. Biosystems Engineering 91(4): 513-524.
  • Cavero, D., Tölle, K. T., Buxade, C., Krieter, J. 2006. Mastitis detection in dairy cows by application of fuzzy logic. Livest. Prod. Sci. 105(1-3): 207-213.
  • Cha, M., Park, S. T., Kim, T., Jayarao, B.M. 2008. Evaluation of bulk tank milk quality based on fuzzy logic. Proceedings of the 2008 International Conference on Artificial Intelligence, 14-17 July 2008, pp.722-727, Las Vegas, Nevada, USA. http://nguyendangbinh.org/Proceedings/IPCV08/Papers/MLM3028.pdf (Erişim: 05.06.2011).
  • Chen, L. J., Cui, L. Y., Xing, L., Han, L. J. 2008. Prediction of the nutrient content in dairy manure using artificial neural network modeling. J. Dairy. Sci. 91: 4822-4829.
  • Craninx, M., Fievez, V., Vlaeminck, B., De Baets, B. 2008. Artificial neural network models of the rumen fermentation pattern in dairy cattle. Comput. Electron. Agric. 60: 226-238.
  • de Mol, R.M., Woldt, W.E. 2001. Application of fuzy logic in automated cow status monitoring. J. Dairy Sci. 84: 400-410.
  • Dong, R., Zhao, G. 2014. The use of artificial neural in vitro rumen methane production using the CNCPS carbohydrate fractions as dietary variables. Livest. Prod. Sci. 162: 159-167.
  • Firk, R., Stamer, E., Junge, W., Krieter, J. 2003. Improving oestrus detection by combination of activity measurements with information about previous oestrus cases. Livest. Prod. Sci. 82(1): 97-103.
  • Grinspan, P., Edan, Y., Kahne, H., Maltz, E. 1994. A fuzzy logic expert system for dairy cow transfer between feding groups. Transactions of The ASAE 37(5): 1647–1654.
  • Grzesiak, W., Blaszczyk, P., Lacroix, R. 2006. Methods of predicting milk yield in dairy cows- Predictive capabilities of Wood’s lactation curve and artificial neural networks (ANNs). Comput. Electron. Agric. 54: 69-83.
  • Grzesiak, W., Lacroix, R., Wójcik, J., Blaszczyk, P. 2003. A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records. Can. J. Anim. Sci. 83: 307-310.
  • Harris, J. 1998. Raw milk grading using fuzzy logic. Int. J. Dairy. Technol. 51(2): 52-56. Hassan, K. J., Samarasinghe, S., Lopez- Benavidest, M. G. 2009. Use of neural networks to detect minor and major pathogens that cause bovine mastitis. J. Dairy. Sci. 92: 1493-1499.
  • Hosseinia, P., Edrisi, M., Edriss, M. A. Nilforooshan, M. A. 2007. Prediction of second parity milk yield and fat percentage of dairy cows based on first parity information using neural networks system. J. Appl. Sci. 7: 3274-3279.
  • Klir, J. G., Yuan, B. 1995. Fuzzy sets and fuzzy logic: Theory and application, Prentice Hall, New Jersey, 574p.
  • Kramer, E., Cavero, D., Stamer, E., Krieter, J. 2009. Mastitis and lameness detection in dairy cows by application of fuzzy logic. Livest. Prod. Sci. 125: 92-96.
  • Mehraban, S. M., Mohebbi, M., Shahidi, F., Vahidian, K. A., Qhods, R. M. 2012. Application of fuzzy logic to classify raw milk based on qualitative properties. Int. J. Agri. Sci. 2(12): 1168-1178.
  • Memmedova, N., Keskin İ. 2011. İneklerde bulanık mantık modeli ile hareketlilik ölçüsünden yararlanılarak kızgınlığın tespiti. Kafkas Üniv. Vet. Fak. Derg. 17(6): 1003-1008.
  • Morag, I., Edan, Y., Maltz, E. 2001. An individual feed allocation decision support system for the dairy farm. J. Agric. Eng. Res. 79(2): 167-176.
  • Negnevitsky, M. 2002. Artificial Intelligence, A Guide to Intelligent Systems. Pearson Education, Harlow, 415 p.
  • Öztemel, E. 2006. Yapay sinir ağları. Papatya Yayıncılık, İstanbul.
  • Salehi, F., Lacroix, R., Wade, K. M. 1998. Improving dairy yield predictions through combined record classifiers and specialized artificial neural networks. Comput. Electron. Agric. 20: 199-213.
  • Salehi, F., Lacroix, R., Wade, K.M. 2000. Development of neuro-fuzzifiers for qualitative analyses of milk yield. Comput. Electron. Agric. 28: 171-186.
  • Sanzogni, L., Kerr, D. 2001. Milk production estimates using feed forwrd artificial neural networks. Comput. Electron. Agric. 32: 21-30.
  • Sharma, A. K., Sharma, R. K., Kasana, H. S. 2007. Prediction of first lactation 305-day milk yield in Karan Fries dairy cattle using ANN modeling. Appl. Soft Comput. 7: 1112-1120.
  • Shahinfar, S., Mehrabani-Yeganeh, H., Lucas, C., Kalhor, A., Kazemian, M., Weigel, K. A. 2012. Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems. Comput. Math. Methods Med. Article ID 127130, 9 pages.
  • Spangler, M. L., Sapp, R. L., Rekaya, R., Bertland, J. K. 2006. Success at first insemination in Australian angus cattle: Analysis of uncertain binary responses. J. Anim. Sci. 84: 20-24.
  • Strasser, M., Lacroix, R., Kok, R., Wade, K. M. 1997. A second generation decision support system for the recommendation of dairy cattle culling decisions, http://www.mcgill.ca/files/animal/97r04.pdf (Erişim: 08.12.2011).
  • Takma, Ç., Atıl, H., Aksakal, V. 2012. Çoklu doğrusal regresyon ve yapay sinir ağı modellerinin laktasyon süt verimlerine uyum yeteneklerinin karşılaştırılması. Kafkas Üniv. Vet. Fak. Derg. 18(6): 941-944.
  • Wade, K. M., Lacroix, R., Strasser, M. 1998. Fuzzy logic membership values as a ranking tool for breeding purposes in dairy cattle. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 11-16 Jan 1998, 27: 433-436, Armidale, Australia.
  • Yang, X. Z., Lacroix, R., Wade, K. M. 2000. Investigation into the production and conformation traits associated with clinical mastitis using artificial neural networks. Can. J. Anim. Sci. 80: 415–426.
  • Zadeh, L. 1965. Fuzzy sets. Inform. Control. 8(3): 338-353.
  • Zarchi, H. A., Jonsson, R., Blanke M. 2009. Improving oestrus detection in dairy cows by combining statistical detection with fuzzy logic classification. http://orbit.dtu.dk/fedora/objects/orbit:56420/datastreams/file_4054429/content, (Erişim: 19.04.2013).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Bölüm Derlemeler
Yazarlar

Aslı Akıllı Bu kişi benim

Hülya Atıl

Yayımlanma Tarihi 28 Kasım 2014
Gönderilme Tarihi 28 Ağustos 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 55 Sayı: 1

Kaynak Göster

APA Akıllı, A., & Atıl, H. (2014). Süt Sığırcılığında Yapay Zeka Teknolojisi: Bulanık Mantık ve Yapay Sinir Ağları. Journal of Animal Production, 55(1), 39-45. https://doi.org/10.29185/hayuretim.363911


26405

Creative Commons License Journal of Animal Production is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


26407 26406 26408   26409  26410263992641126412  26413   26414 26415