Araştırma Makalesi
BibTex RIS Kaynak Göster

Genetik Olarak Farklı ANADOLU-T Etlik Piliç Saf Hatları ve Hibritlerde Büyüme, Refah ve Bacak Sağlamlığı Özellikleri

Yıl 2024, Cilt: 65 Sayı: 2, 149 - 160, 31.12.2024
https://doi.org/10.29185/hayuretim.1573738

Öz

Amaç: Bu çalışmada, genetik olarak farklı saf hat ve hibrit etlik piliçlerde büyüme, refah ve yürüme yeteneği özelliklerinin ortaya koyulması amaçlanmıştır.
Materyal ve Metot: Çalışmada yedi genotipin (A1, A2, A3, B1, B2, ANADOLU-T, ROSS-308) her birinden toplam 112 piliç 42 gün boyunca yetiştirilmiştir. Haftalık canlı ağırlık (CA), vücut uzunluğu, incik uzunluğu ve çapı, refah özellikleri (ayak tabanı dermatiti (FPD), diz yanığı (DY), göğüs yanığı (GY), parmak çarpıklığı (PÇ)), valgus-varus deformasyonu (VVD) ve yürüyüş skoru (YS) özellikleri incelenmiştir.
Bulgular: Kesim yaşında A1, A2 ve A3 hatları diğer genotiplere kıyasla daha düşük CA'ya sahipken, ROSS-308 en ağır olmuştur. Refah göstergeleri genotip ve cinsiyetten önemli düzeyde etkilenmiş, erkekler dişilere kıyasla daha yüksek DY, GY ve PÇ'ye sahip olmuştur. VVD yaşla birlikte artmış, 42. günde ROSS-308 en yüksek angulasyonu göstermiştir.
Yürüyüş skorları A1 hattında 28. günde, A3 hattında ise 35 ve 42 günlerde daha iyi bulunmuştur.
Sonuç: ANADOLU-T baba hatları ve hibritler 21. günden itibaren ana hatlarından daha yüksek CA'ya sahip olmuştur. Genel olarak baba hatları ve hibritlerde daha kötü refah ve yürüme kabiliyeti gözlenmiştir. Diğer yandan, ANADOLU-T baba hatlarında VVD ve yürüyüş skoru CA ile ilişkili olmadığından seleksiyon kriteri olarak kullanılabilir.

Kaynakça

  • Akbas Y, Yalcin S, Ozkan S, Kirkpinar F, Takma C, Gevrekçi Y, Güler HC, Turkmut L. 2009. Heritability estimates of tibial dyschondroplasia, valgus-varus, foot-pad dermatitis and hock burn in broiler. Arch. Geflugelkd. 73: 1-6.
  • Averós X, Estevez I. 2018. Meta-analysis of the effects of intensive rearing environments on the performance and welfare of broiler chickens. Poultry Science 97(11): 3767-3785. https://doi.org/10.3382/ps/pey243
  • Bessei W. 2006. Welfare of broilers: a review. World's Poultry Science Journal 62(3): 455-466. https://doi.org/10.1017/S0043933906001085
  • Bradshaw RH, Kirkden RD, Broom DM. 2002. A review of the aetiology and pathology of leg weakness in broilers in relation to welfare. Avian and Poultry Biology Reviews 13(2): 45-104.
  • Dawson LC, Widowski TM, Liu Z, Edwards AM, Torrey S. 2021. In pursuit of a better broiler: a comparison of the inactivity, behavior, and enrichment use of fast-and slower growing broiler chickens. Poultry Science 100(12), 101451. https://doi.org/10.1016/j.psj.2021.101451
  • Dixon LM. 2020. Slow and steady wins the race: The behaviour and welfare of commercial faster growing broiler breeds compared to a commercial slower growing breed. PLoS one 15(4), e0231006. https://doi.org/10.1371/journal.pone.0231006
  • Erensoy K, Sarıca M, Noubandiguim M, Yamak US, Tekgüler A, Öztekin YB, Karaköse T. 2019. The relationship between metatarsus (shank) and some body characteristics in broiler pure line and cross genotypes. XVIII European Symposium on The Quality of Eggs and Egg Products, İzmir, Türkiye, 23 - 26 Haziran 2019, pp. 145-149.
  • Erensoy K, Noubandiguim M, Cilavdaroglu E, Sarica M, Yamak US. 2020. Correlations between breast yield and morphometric traits in broiler pure lines. Brazilian Journal of Poultry Science 22(01), eRBCA-2019. https://doi.org/10.1590/1806-9061-2019-1148
  • Erensoy K, Sarıca M, Noubandiguim M, Aslan R. 2021. The effects of intermittent feeding and cold water on welfare status and meat quality in broiler chickens reared under daily heat stress. Tropical Animal Health and Production 53(6), 553. https://doi.org/10.1007/s11250-021-02998-4
  • Erensoy K, Sarıca M. 2022. Fast growing broiler production from genetically different pure lines in Turkey. 1. Parental traits: growth, feed intake, reproduction, and hatching traits. Tropical Animal Health and Production 54(5), 322. https://doi.org/10.1007/s11250-022-03319-z
  • Erensoy K, Sarıca M. 2023. Fast growing broiler production from genetically different pure lines in Turkey. 2. Broiler traits: growth, feed intake, feed efficiency, livability, body defects and some heterotic effects. Tropical Animal Health and Production 55(1), 61. https://doi.org/10.1007/s11250-023-03461-2
  • Galal A, Ahmed AMH, Ali UM, Younis HH. 2007. Influence of naked neck gene on laying performance and some hematological parameters of dwarfing hens. International Journal of Poultry Science 6(11): 807-813. https://doi.org/10.3923/ijps.2007.807.813
  • Gao Y, Du ZQ, Feng CG, Deng XM, Li N, Da Y, Hu XX. 2010. Identification of quantitative trait loci for shank length and growth at different development stages in chicken. Animal Genetics 41(1):101-104. https://doi.org/10.1111/j.1365-2052.2009.01962.x González-Cerón F, Rekaya R, Anthony NB, Aggrey SE. 2015. Genetic analysis of leg problems and growth in a random mating broiler population. Poultry Science 94(2): 162-168. https://doi.org/10.3382/ps/peu052
  • Guo Y, Tang H, Wang X, Li W, Wang Y, Yan F, Kang X, Li Z, Han R. 2019. Clinical assessment of growth performance, bone morphometry, bone quality, and serum indicators in broilers affected by valgus-varus deformity. Poultry Science 98(10): 4433-4440. https://doi.org/10.3382/ps/pez269
  • Guo Y, Huang H, Zhang Z, Ma Y, Li J, Tang H, Ma H, Li Z, Li W, Liu X, Kang X, Han R. 2022. Genome-wide association study identifies SNPs for growth performance and serum indicators in Valgus-varus deformity broilers (Gallus gallus) using ddGBS sequencing. BMC Genomics 23(1), 26. https://doi.org/10.1186/s12864-021-08236-3
  • Güz BC, Molenaar R, De Jong IC, Kemp B, Van Den Brand H, Van Krimpen M. 2019. Effects of dietary organic minerals, fish oil, and hydrolyzed collagen on growth performance and tibia characteristics of broiler chickens. Poultry Science 98(12): 6552-6563. https://doi.org/10.3382/ps/pez427
  • Hartcher KM, Lum HK. 2020. Genetic selection of broilers and welfare consequences: a review. World's Poultry Science Journal 76(1): 154-167. https://doi.org/10.1080/00439339.2019.1680025
  • Haslam SM, Knowles TG, Brown SN, Wilkins LJ, Kestin SC, Warriss PD, Nicol CJ. 2007. Factors affecting the prevalence of foot pad dermatitis, hock burn and breast burn in broiler chicken. British Poultry Science 48(3): 264-275. https://doi.org/10.1080/00071660701371341
  • Ith P. 2014. Guideline for interpreting correlation coefficient. McSeveny, R. Conway, S. Wilkes, M. Smith (Eds.), International Mathematics for Middle Year 5, Pearson Australia. https://www.slideshare.net/phannithrupp/guideline-for-interpreting-correlation-coefficient., Accessed 10th October 2024.
  • Kapell DNRG, Hill WG, Neeteson AM, McAdam J, Koerhuis ANM, Avendaño S. 2012. Twenty-five years of selection for improved leg health in purebred broiler lines and underlying genetic parameters. Poultry Science 91(12): 3032-3043. https://doi.org/10.3382/ps.2012-02578
  • Kapell DNRG, Hocking PM, Glover PK, Kremer VD, Avendaño S. 2017. Genetic basis of leg health and its relationship with body weight in purebred turkey lines. Poultry Science 96(6): 1553-1562. https://doi.org/10.3382/ps/pew479
  • Kestin SC, Knowles TG, Tinch AE, Gregory NG. 1992. Prevalence of leg weakness in broiler chickens and its relationship with genotype. The Veterinary Record 131(9): 190-194. https://doi.org/10.1136/vr.131.9.190
  • Knowles TG, Kestin SC, Haslam SM, Brown SN, Green LE, Butterworth A, Pope SJ, Pfeiffer D, Nicol CJ. 2008. Leg disorders in broiler chickens: prevalence, risk factors and prevention. PloS one 3(2), e1545. https://doi.org/10.1371/journal.pone.0001545
  • Le Bihan-Duval E, Beaumont C, Colleau JJ. 1997. Genetic relationships between twisted legs and growth or conformation traits in broiler chickens. Journal of Animal Breeding and Genetics 114(1-6): 239-259. https://doi.org/10.1111/j.1439-0388.1997.tb00510.x
  • Leterrier C, Nys Y. 1992. Clinical and anatomical differences in varus and valgus deformities of chick limbs suggest different aetio‐pathogenesis. Avian Pathology 21(3): 429-442. https://doi.org/10.1080/03079459208418861
  • Pishnamazi A, Renema RA, Zuidhof MJ, Robinson FE. 2008. Effect of initial full feeding of broiler breeder pullets on carcass development and body weight variation. Journal of Applied Poultry Research 17(4): 505-514. https://doi.org/10.3382/japr.2008-00062
  • Rasmussen SN, Erasmus M, Riber AB. 2022. The relationships between age, fear responses, and walking ability of broiler chickens. Applied Animal Behaviour Science 254, 105713. https://doi.org/10.1016/j.applanim.2022.105713
  • Reiter K, Bessei W. 2009. Effect of locomotor activity on leg disorder in fattening chicken. Berliner und munchener tierarztliche wochenschrift 122(7-8): 264-270. https://doi.org/10.2376/0005-9366-122-264
  • Rekaya R, Sapp RL, Wing T, Aggrey SE. 2013. Genetic evaluation for growth, body composition, feed efficiency, and leg soundness. Poultry Science 92(4): 923-929. https://doi.org/10.3382/ps.2012-02649
  • Sanotra GS, Lund JD, Ersbøll AK, Petersen JS, Vestergaard KS. 2001. Monitoring leg problems in broilers: a survey of commercial broiler production in Denmark. World's Poultry Science Journal 57(1): 55-69. https://doi.org/10.1079/WPS20010006
  • Santos MN, Widowski TM, Kiarie EG, Guerin MT, Edwards AM, Torrey S. 2022. In pursuit of a better broiler: walking ability and incidence of contact dermatitis in conventional and slower growing strains of broiler chickens. Poultry Science 101(4), 101768. https://doi.org/10.1016/j.psj.2022.101768
  • Sarıca M, Erensoy K, Oğuzhan E, Yeter B, Camci Ö. 2021a. Effects of Male Selection for Body Weight on Performance of Offsprings in Broiler Pure-Lines. Brazilian Journal of Poultry Science 23(03), eRBCA-2021. https://doi.org/10.1590/1806-9061-2021-1464
  • Sarıca M, Erensoy K, Özkan İ, Oğuzhan E, Çağlak S. 2021b. Growth and carcass traits of Anadolu-T broiler pure lines. Turkish Journal of Agriculture-Food Science and Technology 9(11): 1980-1987. https://doi.org/10.24925/turjaf.v9i11.1980-1987.4575
  • Sarıca M, Karakoç K, Erensoy K. 2022. Effects of varying group sizes on performance, body defects, and productivity in broiler chickens. Archives Animal Breeding 65(2): 171-181. https://doi.org/10.5194/aab-65-171-2022
  • Shim MY, Karnuah AB, Anthony NB, Pesti GM, Aggrey SE. 2012. The effects of broiler chicken growth rate on valgus, varus, and tibial dyschondroplasia. Poultry Science 91(1): 62-65. https://doi.org/10.3382/ps.2011-01599
  • Siegel PB. 2014. Evolution of the modern broiler and feed efficiency. Annual Review of Animal Biosciences 2(1): 375-385. https://doi.org/10.1146/annurev-animal-022513-114132
  • Singh CB, Jilani MH. 2008. Inheritance of six-week body weight, shank length, keel bone length and breast angle in broiler chickens. Pantnagar Journal of Research 6(2): 279-280.
  • Sørensen P, Su G, Kestin SC. 2000. Effects of age and stocking density on leg weakness in broiler chickens. Poultry Science 79(6): 864-870. https://doi.org/10.1093/ps/79.6.864
  • Tallentire CW, Leinonen I, Kyriazakis I. 2018. Artificial selection for improved energy efficiency is reaching its limits in broiler chickens. Scientific Reports 8(1), 1168. https://doi.org/10.1038/s41598-018-19231-2
  • van den Brand H, Molenaar R, Klaasen M. 2022. Research Note: Comparing methods to assess Valgus-Varus deformity in broiler chickens. Poultry Science 101(7), 101907. https://doi.org/10.1016/j.psj.2022.101907
  • van der Eijk JA, Guzhva O, Schulte-Landwehr J, Giersberg MF, Jacobs L, de Jong IC. 2023. Individuality of a group: detailed walking ability analysis of broiler flocks using optical flow approach. Smart Agricultural Technology 5, 100298. https://doi.org/10.1016/j.atech.2023.100298
  • Zuidhof MJ, Schneider BL, Carney VL, Korver DR, Robinson FE. 2014. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Science 93(12): 2970-2982. https://doi.org/10.3382/ps.2014-04291

Growth, Welfare and Leg Soundness Traits in Genetically Different ANADOLU-T Broiler Pure Lines and Hybrids

Yıl 2024, Cilt: 65 Sayı: 2, 149 - 160, 31.12.2024
https://doi.org/10.29185/hayuretim.1573738

Öz

Objective: This study aimed to investigate the growth, welfare and walking ability in broiler chickens from different genetic pure lines and hybrids.
Materials and Methods: A total of 112 broilers from each of the seven genotypes (A1, A2, A3, B1, B2, ANADOLU-T, ROSS-308) and both sexes were monitored from 0 to 42 days. Weekly body weight (BW), body length, shank length and diameter, welfare traits (foot pad dermatitis (FPD), hock burn (HB), breast burn (BB), finger crookedness (FC)), valgus-varus deformation (VVD), and gait score (GS) were measured.
Results: A1, A2, and A3 lines had lighter BW compared to the other genotypes, with ROSS-308 being heavier at 35 and 42 days. Welfare indicators showed significant genotype and sex effects, with males exhibiting higher levels of HB, BB, and FC compared to females. VV angulation increased with age, with ROSS-308 showing the highest angulation at 42 days. Gait scores were better in the A1 line at 28 days and A3 line at 35 and 42 days.
Conclusion: ANADOLU-T sire lines and hybrids had higher BW than dam lines from 21 days onwards. Overall poorer welfare and impaired walking ability were observed in sire lines and hybrids. On the other hand, VVD and gait score in ANADOLU-T sire lines could be used as selection criteria since they were not associated with BW.

Etik Beyan

All animal handling and experimental procedures were performed in accordance with the Ondokuz Mayıs University Animal Care and Use Ethics Committee (Decision no: 2022/36; date: 23.06.2022).

Teşekkür

The authors wish to thank the workers and technical staff of Eskişehir Transitional Zone Research Institute, and Ondokuz Mayıs University, Faculty of Agriculture, Livestock Research and Application Farm.

Kaynakça

  • Akbas Y, Yalcin S, Ozkan S, Kirkpinar F, Takma C, Gevrekçi Y, Güler HC, Turkmut L. 2009. Heritability estimates of tibial dyschondroplasia, valgus-varus, foot-pad dermatitis and hock burn in broiler. Arch. Geflugelkd. 73: 1-6.
  • Averós X, Estevez I. 2018. Meta-analysis of the effects of intensive rearing environments on the performance and welfare of broiler chickens. Poultry Science 97(11): 3767-3785. https://doi.org/10.3382/ps/pey243
  • Bessei W. 2006. Welfare of broilers: a review. World's Poultry Science Journal 62(3): 455-466. https://doi.org/10.1017/S0043933906001085
  • Bradshaw RH, Kirkden RD, Broom DM. 2002. A review of the aetiology and pathology of leg weakness in broilers in relation to welfare. Avian and Poultry Biology Reviews 13(2): 45-104.
  • Dawson LC, Widowski TM, Liu Z, Edwards AM, Torrey S. 2021. In pursuit of a better broiler: a comparison of the inactivity, behavior, and enrichment use of fast-and slower growing broiler chickens. Poultry Science 100(12), 101451. https://doi.org/10.1016/j.psj.2021.101451
  • Dixon LM. 2020. Slow and steady wins the race: The behaviour and welfare of commercial faster growing broiler breeds compared to a commercial slower growing breed. PLoS one 15(4), e0231006. https://doi.org/10.1371/journal.pone.0231006
  • Erensoy K, Sarıca M, Noubandiguim M, Yamak US, Tekgüler A, Öztekin YB, Karaköse T. 2019. The relationship between metatarsus (shank) and some body characteristics in broiler pure line and cross genotypes. XVIII European Symposium on The Quality of Eggs and Egg Products, İzmir, Türkiye, 23 - 26 Haziran 2019, pp. 145-149.
  • Erensoy K, Noubandiguim M, Cilavdaroglu E, Sarica M, Yamak US. 2020. Correlations between breast yield and morphometric traits in broiler pure lines. Brazilian Journal of Poultry Science 22(01), eRBCA-2019. https://doi.org/10.1590/1806-9061-2019-1148
  • Erensoy K, Sarıca M, Noubandiguim M, Aslan R. 2021. The effects of intermittent feeding and cold water on welfare status and meat quality in broiler chickens reared under daily heat stress. Tropical Animal Health and Production 53(6), 553. https://doi.org/10.1007/s11250-021-02998-4
  • Erensoy K, Sarıca M. 2022. Fast growing broiler production from genetically different pure lines in Turkey. 1. Parental traits: growth, feed intake, reproduction, and hatching traits. Tropical Animal Health and Production 54(5), 322. https://doi.org/10.1007/s11250-022-03319-z
  • Erensoy K, Sarıca M. 2023. Fast growing broiler production from genetically different pure lines in Turkey. 2. Broiler traits: growth, feed intake, feed efficiency, livability, body defects and some heterotic effects. Tropical Animal Health and Production 55(1), 61. https://doi.org/10.1007/s11250-023-03461-2
  • Galal A, Ahmed AMH, Ali UM, Younis HH. 2007. Influence of naked neck gene on laying performance and some hematological parameters of dwarfing hens. International Journal of Poultry Science 6(11): 807-813. https://doi.org/10.3923/ijps.2007.807.813
  • Gao Y, Du ZQ, Feng CG, Deng XM, Li N, Da Y, Hu XX. 2010. Identification of quantitative trait loci for shank length and growth at different development stages in chicken. Animal Genetics 41(1):101-104. https://doi.org/10.1111/j.1365-2052.2009.01962.x González-Cerón F, Rekaya R, Anthony NB, Aggrey SE. 2015. Genetic analysis of leg problems and growth in a random mating broiler population. Poultry Science 94(2): 162-168. https://doi.org/10.3382/ps/peu052
  • Guo Y, Tang H, Wang X, Li W, Wang Y, Yan F, Kang X, Li Z, Han R. 2019. Clinical assessment of growth performance, bone morphometry, bone quality, and serum indicators in broilers affected by valgus-varus deformity. Poultry Science 98(10): 4433-4440. https://doi.org/10.3382/ps/pez269
  • Guo Y, Huang H, Zhang Z, Ma Y, Li J, Tang H, Ma H, Li Z, Li W, Liu X, Kang X, Han R. 2022. Genome-wide association study identifies SNPs for growth performance and serum indicators in Valgus-varus deformity broilers (Gallus gallus) using ddGBS sequencing. BMC Genomics 23(1), 26. https://doi.org/10.1186/s12864-021-08236-3
  • Güz BC, Molenaar R, De Jong IC, Kemp B, Van Den Brand H, Van Krimpen M. 2019. Effects of dietary organic minerals, fish oil, and hydrolyzed collagen on growth performance and tibia characteristics of broiler chickens. Poultry Science 98(12): 6552-6563. https://doi.org/10.3382/ps/pez427
  • Hartcher KM, Lum HK. 2020. Genetic selection of broilers and welfare consequences: a review. World's Poultry Science Journal 76(1): 154-167. https://doi.org/10.1080/00439339.2019.1680025
  • Haslam SM, Knowles TG, Brown SN, Wilkins LJ, Kestin SC, Warriss PD, Nicol CJ. 2007. Factors affecting the prevalence of foot pad dermatitis, hock burn and breast burn in broiler chicken. British Poultry Science 48(3): 264-275. https://doi.org/10.1080/00071660701371341
  • Ith P. 2014. Guideline for interpreting correlation coefficient. McSeveny, R. Conway, S. Wilkes, M. Smith (Eds.), International Mathematics for Middle Year 5, Pearson Australia. https://www.slideshare.net/phannithrupp/guideline-for-interpreting-correlation-coefficient., Accessed 10th October 2024.
  • Kapell DNRG, Hill WG, Neeteson AM, McAdam J, Koerhuis ANM, Avendaño S. 2012. Twenty-five years of selection for improved leg health in purebred broiler lines and underlying genetic parameters. Poultry Science 91(12): 3032-3043. https://doi.org/10.3382/ps.2012-02578
  • Kapell DNRG, Hocking PM, Glover PK, Kremer VD, Avendaño S. 2017. Genetic basis of leg health and its relationship with body weight in purebred turkey lines. Poultry Science 96(6): 1553-1562. https://doi.org/10.3382/ps/pew479
  • Kestin SC, Knowles TG, Tinch AE, Gregory NG. 1992. Prevalence of leg weakness in broiler chickens and its relationship with genotype. The Veterinary Record 131(9): 190-194. https://doi.org/10.1136/vr.131.9.190
  • Knowles TG, Kestin SC, Haslam SM, Brown SN, Green LE, Butterworth A, Pope SJ, Pfeiffer D, Nicol CJ. 2008. Leg disorders in broiler chickens: prevalence, risk factors and prevention. PloS one 3(2), e1545. https://doi.org/10.1371/journal.pone.0001545
  • Le Bihan-Duval E, Beaumont C, Colleau JJ. 1997. Genetic relationships between twisted legs and growth or conformation traits in broiler chickens. Journal of Animal Breeding and Genetics 114(1-6): 239-259. https://doi.org/10.1111/j.1439-0388.1997.tb00510.x
  • Leterrier C, Nys Y. 1992. Clinical and anatomical differences in varus and valgus deformities of chick limbs suggest different aetio‐pathogenesis. Avian Pathology 21(3): 429-442. https://doi.org/10.1080/03079459208418861
  • Pishnamazi A, Renema RA, Zuidhof MJ, Robinson FE. 2008. Effect of initial full feeding of broiler breeder pullets on carcass development and body weight variation. Journal of Applied Poultry Research 17(4): 505-514. https://doi.org/10.3382/japr.2008-00062
  • Rasmussen SN, Erasmus M, Riber AB. 2022. The relationships between age, fear responses, and walking ability of broiler chickens. Applied Animal Behaviour Science 254, 105713. https://doi.org/10.1016/j.applanim.2022.105713
  • Reiter K, Bessei W. 2009. Effect of locomotor activity on leg disorder in fattening chicken. Berliner und munchener tierarztliche wochenschrift 122(7-8): 264-270. https://doi.org/10.2376/0005-9366-122-264
  • Rekaya R, Sapp RL, Wing T, Aggrey SE. 2013. Genetic evaluation for growth, body composition, feed efficiency, and leg soundness. Poultry Science 92(4): 923-929. https://doi.org/10.3382/ps.2012-02649
  • Sanotra GS, Lund JD, Ersbøll AK, Petersen JS, Vestergaard KS. 2001. Monitoring leg problems in broilers: a survey of commercial broiler production in Denmark. World's Poultry Science Journal 57(1): 55-69. https://doi.org/10.1079/WPS20010006
  • Santos MN, Widowski TM, Kiarie EG, Guerin MT, Edwards AM, Torrey S. 2022. In pursuit of a better broiler: walking ability and incidence of contact dermatitis in conventional and slower growing strains of broiler chickens. Poultry Science 101(4), 101768. https://doi.org/10.1016/j.psj.2022.101768
  • Sarıca M, Erensoy K, Oğuzhan E, Yeter B, Camci Ö. 2021a. Effects of Male Selection for Body Weight on Performance of Offsprings in Broiler Pure-Lines. Brazilian Journal of Poultry Science 23(03), eRBCA-2021. https://doi.org/10.1590/1806-9061-2021-1464
  • Sarıca M, Erensoy K, Özkan İ, Oğuzhan E, Çağlak S. 2021b. Growth and carcass traits of Anadolu-T broiler pure lines. Turkish Journal of Agriculture-Food Science and Technology 9(11): 1980-1987. https://doi.org/10.24925/turjaf.v9i11.1980-1987.4575
  • Sarıca M, Karakoç K, Erensoy K. 2022. Effects of varying group sizes on performance, body defects, and productivity in broiler chickens. Archives Animal Breeding 65(2): 171-181. https://doi.org/10.5194/aab-65-171-2022
  • Shim MY, Karnuah AB, Anthony NB, Pesti GM, Aggrey SE. 2012. The effects of broiler chicken growth rate on valgus, varus, and tibial dyschondroplasia. Poultry Science 91(1): 62-65. https://doi.org/10.3382/ps.2011-01599
  • Siegel PB. 2014. Evolution of the modern broiler and feed efficiency. Annual Review of Animal Biosciences 2(1): 375-385. https://doi.org/10.1146/annurev-animal-022513-114132
  • Singh CB, Jilani MH. 2008. Inheritance of six-week body weight, shank length, keel bone length and breast angle in broiler chickens. Pantnagar Journal of Research 6(2): 279-280.
  • Sørensen P, Su G, Kestin SC. 2000. Effects of age and stocking density on leg weakness in broiler chickens. Poultry Science 79(6): 864-870. https://doi.org/10.1093/ps/79.6.864
  • Tallentire CW, Leinonen I, Kyriazakis I. 2018. Artificial selection for improved energy efficiency is reaching its limits in broiler chickens. Scientific Reports 8(1), 1168. https://doi.org/10.1038/s41598-018-19231-2
  • van den Brand H, Molenaar R, Klaasen M. 2022. Research Note: Comparing methods to assess Valgus-Varus deformity in broiler chickens. Poultry Science 101(7), 101907. https://doi.org/10.1016/j.psj.2022.101907
  • van der Eijk JA, Guzhva O, Schulte-Landwehr J, Giersberg MF, Jacobs L, de Jong IC. 2023. Individuality of a group: detailed walking ability analysis of broiler flocks using optical flow approach. Smart Agricultural Technology 5, 100298. https://doi.org/10.1016/j.atech.2023.100298
  • Zuidhof MJ, Schneider BL, Carney VL, Korver DR, Robinson FE. 2014. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Science 93(12): 2970-2982. https://doi.org/10.3382/ps.2014-04291
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kanatlı Hayvan Yetiştirme ve Islahı
Bölüm Araştırma Makalesi
Yazarlar

Kadir Erensoy 0000-0002-7479-6203

Erken Görünüm Tarihi 31 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 25 Ekim 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 65 Sayı: 2

Kaynak Göster

APA Erensoy, K. (2024). Genetik Olarak Farklı ANADOLU-T Etlik Piliç Saf Hatları ve Hibritlerde Büyüme, Refah ve Bacak Sağlamlığı Özellikleri. Journal of Animal Production, 65(2), 149-160. https://doi.org/10.29185/hayuretim.1573738


26405

Creative Commons License Journal of Animal Production is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


26407 26406 26408   26409  26410263992641126412  26413   26414 26415