Derleme
BibTex RIS Kaynak Göster

Küresel Cerrahi ve Cerrahi Hemşireliğinde Yapay Zeka Uygulamaları

Yıl 2025, Cilt: 8 Sayı: 3, 413 - 427, 26.12.2025
https://doi.org/10.54189/hbd.1606325

Öz

Günümüzde hızlı bir ilerleme gösteren yapay zeka teknolojileri, her alanda olduğu gibi cerrahi alanında da etkili ve başarılı bir ilerleme göstermektedir. Bu çalışma, yapay zeka teknolojileri ve uygulamalarının küresel cerrahi ve cerrahi hemşireliği üzerindeki etkilerini ortaya koymayı amaçlamıştır. Google Scholar, Pubmed, Scopus, Web of Science veri tabanlarında literatür taraması yapılarak elde edilen veriler ışığında, yapay zeka teknolojilerinin küresel cerrahi ve cerrahi hemşireliği alanındaki yararları ve sınırlılıkları gözden geçirilmiştir. Cerrahi alanda ve cerrahlar için yaygın olarak kullanılan yapay zeka teknolojilerinin uygulamada çok başarılı olduğu ancak bazı etik sorunlara neden olabileceği tartışılmıştır. Cerrahi hemşireliği açısından ise yapay zeka uygulamalarının sınırlı olduğu, öğrenci eğitiminde başarılı olduğu ve bu teknolojilerin klinikte hemşirelere bazı yeni sorumluluklar getirdiği görülmektedir. Yapay zeka teknolojileri cerrahi alanında yaygın olarak kullanılmasına rağmen cerrahi hemşireliği alanında kullanımı henüz istenilen düzeyde değildir. Hemşirelik alanında etik ilkeler çerçevesinde bu teknolojilerin kullanımının arttırılması için gerekli eğitimlerin verilmesi ve hemşirelerin bu alanda bilgi sahibi olması gerekmektedir.

Kaynakça

  • Aggarwal R, Sounderajah V, Martin G, Ting DSW, Karthikesalingam A, King D, et al. (2021). Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit Med, 4(1), 1-23. doi:10.1038/s41746-021-00438-z
  • Aimar A, Palermo A, Innocenti B. (2019). The Role of 3D printing in medical applications: A state of the art. Journal Of Healthcare Engineering, 2019(1), 1-14. doi:10.1155/2019/5340616
  • Ak G, Gursoy B, Yenidunya F, Yildirim M, Catal E. (2017). Investigation of knowledges, attitudes and behaviors of nurses and nursing students in different generations about robotic surgery. IMCOFE, Rome, Italy. (Access date:6.08.2024). https://www.imcofe.org/5imcofe/sayfa/tam-metinkitaplari/15
  • Akıncı D, Antonoli T. (2020). Ethical considerations for artificial intelligence: an overview of the current radiology landscape. Diagnostic Interv Radiol, Sep 8, 26(5), 504–11. doi: 10.5152/dir.2020.19279
  • Amin A, Cardoso SA, Suyambu J, Abdus Saboor H, Cardoso RP, Husnain A, et al. (2024). Future of artificial intelligence in surgery: A narrative review. Cureus, 16(1), 1-9. doi: 10.7759/cureus.51631
  • Arslan N, Yaylaci B, Eyupoglu ND, Kurtuncu M. (2018). Emerging technology in health: Three-dimensional printing. International Journal Of Printing Technologies And Digital Industry, 2(2), 99-110.
  • Awuah WA, Adebusoye FT, Wellington J, David L, Salam A, Yee ALW, et al. (2024). Recent outcomes and challenges of artificial intelligence, machine learning, and deep learning in neurosurgery. World Neurosurgery: X, 23, 1-9. doi:10.1016/j.wnsx.2024.100301
  • Aydın L, Küçük S. (2017). Design and construction of ankle foot orthosis by means of three dimensional printers. Journal of Polytechnic, 20(1), 1-8. doi: 10.2339/2017.20.1
  • Azimi K, Honaker MD, Chalil Madathil S, Khasawneh MT. (2020). Post-operative infection prediction and risk factor analysis in colorectal surgery using data mining techniques: A pilot study. Surgical Infections, 21(9), 784-792. doi:10.1089/sur.2019.138
  • Bellini V, Valente M, Turetti M, Del Rio P, Saturno F, Maffezzoni M, et al. (2022). Current applications of artificial intelligence in bariatric surgery. Obesity Surgery, 32(8), 2717-2733. doi:10.1007/s11695-022-06100-1
  • Bhandari M, Zeffiro T, Reddiboina M. (2020). Artificial intelligence and robotic surgery: Current perspective and future directions. Current Opinion in Urology, 30(1), 48-54. doi:10.1097/MOU.0000000000000692
  • Bhbosale S, Pujari V, Multani Z. (2020). Advantages and disadvantages of artificial intellegence. Aayushi International Interdisciplinary Research Journal, 77, 227-230.
  • Bian Y, Xiang Y, Tong B, Feng B, Weng X. (2020). Artificial intelligence-assisted system in postoperative follow-up of orthopedic patients: Exploratory quantitative and qualitative study. J Med Internet Res, 22(5), 1-8. doi: 10.2196/16896
  • Biglino G, Capelli C, Koniordou D, Robertshaw D, Leaver LK, Scievano S, et al. (2017). Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenital Heart Disease, 12, 113-118. doi:10.1111/chd.12414
  • Binkley J, Bukoski AD, Doty J, Crane M, Barnes SL, Quick JA. (2019). Surgical simulation: Markers of proficiency. J Surg Educ, 76, 234-41. doi:10.1016/j.jsurg.2018.05.018
  • Boada I, Rodriguez-Benitez A, Garcia-Gonzalez JM, Olivet J, Carreras V, Sbert M. (2015). Using a serious game to complement CPR instruction in a nurse faculty. Computer Methods and Programs in Biomedicine, 122(2), 282-291. doi:10.1016/j.cmpb.2015.08.006
  • Bodenstedt S, Wagner M, Müller-Stich BP, Weitz J, Speidel S. (2020). Artificial intelligence-assisted surgery: Potential and challenges. Visc Med, 36(6), 450-455. doi:10.1159/000511351.
  • Braun M, Hummel P, Beck S, Dabrock P. (2020). Primer on an ethics of AI-based decision support systems in the clinic. J Med Ethics, 47(12), 1-8. doi:10.1136/medethics-2019-105860
  • Briceño J, Calleja R, Hervás C. (2022). Artificial intelligence and liver transplantation: Looking for the best donorrecipient pairing. Hepatobiliary Pancreatic Diseases International, 21(4), 347-53. doi:10.1016/j.hbpd.2022.03.001
  • Butt AL, Kardong-Edgren S, Ellertson A. (2018). Using game-based virtual reality with haptics for skill acquisition. Clinical Simulation in Nursing, 16(1), 25-32. doi:10.1016/j.ecns.2017.09.010
  • Cao Y, Fang X, Ottosson J, Näslund E, Stenberg E. (2019). A Comparative study of machine learning algorithms in predicting severe complications after bariatric surgery. J Clin Med, 8(5), 1-16. doi:10.3390/jcm8050668
  • Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, et al. (2021). AI applications to medical images: from machine learning to deep learning. Physica Medica, 83, 9-24. doi:10.1016/j.ejmp.2021.02.006
  • Chang CY, Sung HY, Guo JL, Chang BY, Kuo FR. (2022). Effects of spherical video-based virtual reality on nursing students’ learning performance in childbirth education training. Interactive Learning Environments, 30(3), 400-416. doi:10.1080/10494820.2019.1661854
  • Chen D, Afzal N, Sohn S, Habermann EB, Naessens JM, Larson DW, et al. (2018). Postoperative bleeding risk prediction for patients undergoing colorectal surgery. Surgery, 164(6), 1209–16. doi:10.1016/j.surg.2018.05.043
  • Chen IY, Szolovits P, Ghassemi M. (2019). Can AI help reduce disparities in general medical and mental health care? AMA J Ethics, 21(2), E167–179.
  • Clusmann J, Kolbinger FR, Muti HS, Carrero ZI, Eckardt JN, Laleh NG, et al. (2023). The Future landscape of large language models in medicine. Commun Med, 3(1), 141. doi:10.1038/s43856-023-00370-1
  • Cobianchi L, Verde JM, Loftus TJ, Piccolo D, Dal Mas F, Mascagni P, et al. (2022). Artificial intelligence and surgery: Ethical dilemmas and open issues. J Am Coll Surg, 235(2), 268–75. doi:10.1097/XCS.0000000000000242
  • Creighton FX, Unberath M, Song T, Zhao Z, Armand M, Carey J. (2020). Early feasibility studies of augmented reality navigation for lateral skull base surgery. Otol Neurotol, 41(7), 883-8. doi:10.1097/MAO.0000000000002724
  • Elendu C, Amaechi DC, Elendu TC, Jingwa KA, Okoye OK, John Okah M, et al. (2023). Ethical implications of AI and robotics in healthcare: A review. Medicine (Baltimore), 102(50), 1-7. doi:10.1097/MD.0000000000036671
  • Fan X, Zhu Q, Tu P, Joskowicz L, Chen X. (2023). A Review of advances in image-guided orthopedic surgery. Physics in Medicine & Biology, 68(2), 02TR01-1-13. doi:10.1088/1361-6560/acaae9
  • Froiio C, Berlth F, Capovilla G, Tagkalos E, Hadzijusufovic E, Mann C, et al. (2022). Robotic-assisted surgery for esophageal submucosal tumors: A ainglecenter case series. Updates Surg, 74(3), 1043-54. doi:10.1007/s13304-022-01247-z
  • Garcia Nespolo R, Yi D, Cole E, Valikodath N, Luciano C, Leiderma YI. (2022). Evaluation of artificial intelligence-based intraoperative guidance tools for phacoemulsification cataract surgery. JAMA Ophthalmology, 140(2), 170–7. doi:10.1001/jamaophthalmol.2021.5742
  • Gökçen Gökalp M, Uzer MA. (2024). Nursing care in the age of artificial intelligence. University of Health Sciences Journal of Nursing, 6(1), 89-94. doi:10.48071/sbuhemsirelik.1349981
  • Gonçalves-Bradley DC, Lannin NA, Clemson L, Cameron ID, Shepperd S. (2022). Discharge Planning from Hospital. Cochrane Database Syst Rev, 2(2), 10-15. doi:10.1002/14651858.CD000313.pub6
  • Griffin F. (2021). Artificial intelligence and liability in healthcare. Health Matrix, 31, 65-106.
  • Grote T, Berens P. (2020). On the ethics of algorithmic secision-making in healthcare. J Med Ethics, 46, 205–211. doi:10.1136/medethics-2019-105586
  • Gunay Ismailoglu E, Zaybak A. (2018). Comparison of the effectiveness of a virtual simulator with a plastic arm model in teaching intravenous catheter insertion skills. CIN: Computers, Informatics, Nursing, 36(2), 98–105. doi:10.1097/CIN.0000000000000405
  • Gündoğdu H, Dikmen Y. (2017). Hemsirelik egitiminde simulasyon: sanal gerceklik ve haptik sistemler. Journal of Human Rhythm, 3(4), 173-176.
  • Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. (2024). Artificial intelligence in surgery: The Future is now. Eur Surg Res, 65(1), 22–39. doi:10.1159/000536393
  • Hamilton A. (2024). The Future of artificial intelligence in surgery. Cureus, 16(7), e63699. doi:10.7759/cureus.63699
  • Hashimoto DA, Rosman G, Rus D, Meireles OR. (2018). Artificial intelligence in surgery: Promises and perils. Ann Surg, 268(1), 70-76. doi:10.1097/SLA.0000000000002693.
  • Hashimoto DA, Rosman G, Witkowski ER, Stafford C, Navarette-Welton AJ, Rattner DW, et al. (2019). Computer vision analysis of intraoperative video: Automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg, 270(3), 414–21. doi: 10.1097/SLA.0000000000003460
  • He B, Smet MD, Sodhi M, Etminan M, Maberley D. (2021). A Review of robotic surgical training: Establishing a curriculum and credentialing process in ophthalmology. Eye, 35, 3192-3201. doi:10.1038/s41433-021- 01599-7.
  • Hindocha S, Badea C. (2022). Moral exemplars for the virtuous machine: The Clinician’s role in ethical artificial intelligence for healthcare. AI Ethics, 2(1), 167–75. doi:10.1007/s43681-021-00089-6
  • Hu HZ, Feng XB, Shao ZW, Xie M, Xu S, Wu XH, et al. (2019). Application and prospect of mixed reality technology in medical field. Curr Med Sci, 39(1), 1-6. doi:10.1007/s11596-019-1992-8
  • Jung EY, Park DK, Lee YH, Jo HS, Lim YS, Park RW. (2012). Evaluation of practical exercises using an ıntravenous simulator incorporating virtual reality and haptics device technologies. Nurse Education Today, 32(4), 458-463. doi:10.1016/j.nedt.2011.05.012
  • Kandemir F, Azizoglu F, Terzi B. (2023). Use of artificial intelligence and robotic technologies in nursing. Journal of Intensive Care Nursing, 27(2), 118-127.
  • Kang MJ, De Gagne JC, Kang HS. (2016). Perioperative nurses’ work experience with robotic surgery a focus group study. Computers Informatics Nursing, 34(4), 152-58. doi:10.1097/CIN.0000000000000224.
  • Kawka M, Gall TMH, Fang C, Liu R, Jiao LR. (2022). Intraoperative video analysis and machine learning models will change the future of surgical training. Intelligent Surgery, 1, 13–5. doi:10.1016/j.isurg.2021.03.001
  • Keles H. (2022). Artificial intelligence applications in medicine. Kirikkale Universitesi Tip Fakultesi Dergisi, 24(3), 604-613. doi:10.24938/kutfd.1214512
  • Khanzode KCA, Sarode RD. (2020). Advantages and disadvantages of artificial intelligence and machine learning: A literature review. International Journal of Library & Information Science (IJLIS), 9(1), 30-36.
  • Kılınç Akman E, Balcı F, Kanan N. (2022). The Importance of using the second safe surgical checklist to robot-assisted surgery (the second “timeout”). Fenerbahce University Journal of Health Sciences, 2(2), 539-547. doi:10.56061/fbujohs.1141442
  • Ku EK, Min SK, Shin DH, Chung YS, Kim YJ, Kim KG, et al. (2021). Artificial intelligence for intraoperative guidance: Using an object detection model in conjunction with data augmentation to detect parathyroid glands during thyroidectomy. Lancet, 1-28. doi:10.2139/ssrn.3916131
  • Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C, et al. (2023). Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLOS Digital Health, 2(2), 1-12. doi:10.1371/journal.pdig.0000198
  • Kuzu Demir EB, Caka C, Tugtekin U, Demir K, Islamoglu H, Kuzu A. (2016). The Use of three dimensional printing technologies in education: Practices in Turkey. Ege Eğitim Dergisi, 17(2), 481-503. doi:10.12984/egeefd.280754
  • Lambrechts A, Wirix-Speetjens R, Maes F, Van Huffel S. (2022). Artificial intelligence based patient-specific preoperative planning algorithm for total knee arthroplasty. Front Robot AI, 9, 840282. doi:10.3389/frobt.2022.840282
  • Li A, Javidan AP, Namazi A, Forbes T. (2024). Development of an artificial intelligence tool for intraoperative guidance during endovascular abdominal aortic aneurysm repair. Annals of Vascular Surgery, 99, 96-104. doi:10.1016/j.avsg.2023.08.027
  • Li A, Javidan AP, Namazi B, Madani A, Forbes TL. (2022). Development of an artificial intelligence tool for intraoperative guidance during endovascular aneurysm repair. J Vasc Surg, 76(4), e114 - e115. doi:10.1016/j.jvs.2022.07.034
  • Li S, Deng YQ, Zhu ZL, Hua HL, Tao ZZ. (2021). A Comprehensive review on radiomics and deep learning for nasopharyngeal carcinoma imaging. Diagnostics (Basel), 11(9), 1523-1532. doi:10.3390/diagnostics11091523
  • Lioce L, Maddux G, Goddard N, Fogle I, Fogle M, Gunter S, et al. (2020). Application of 3D printing in the development of training simulations for nursing students. Proceedings of the 9th International Workshop on Innovative Simulation for Healthcare (IWISH 2020). Alabama, p.7-12. doi:10.46354/i3m.2020.iwish.002.
  • Liu H, Baena FRY. (2020). Automatic markerless registration and tracking of the bone for computer-assisted orthopaedic surgery. IEEE Access, 8, 42010-42020. doi:10.1109/ACCESS.2020.2977072
  • Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. (2021). Application of artificial intelligence in medicine: An overview. Curr Med Sci, 41(6), 1105-15. doi:10.1007/s11596-021-2474-3
  • Liyanage H, Liaw S, Jonnagaddala J, Schreiber R, Kuziemsky C, Terry AL, et al. (2019). Artificial intelligence in primary health care: Perceptions, issues, and challenges. Yearbook of Medical Informatics, 28(01), 041-046. doi:10.1055/s-0039-1677901
  • Lobo A, Barbosa A, Guimarães T, Lopes J, Peixoto H, Santos MF. (2023). Better medical efficiency by means of hospital bed management optimization: A comparison of artificial intelligence techniques. Prog Artif Intell, 1411, 260-73. doi:10.1007/978-3-031-49011-8_21
  • Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, et al. (2020). Artificial intelligence and surgical decision-making. JAMA Surgery, 155(2), 148-158. doi:10.1001/jamasurg.2019.4917
  • Ludbrook GL. (2022). The Hidden pandemic: The cost of postoperative complications. Current Anesthesiology Reports, 12(1), 1–9. doi:10.1007/s40140-021-00493-y
  • Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH, et al. (2022). Artificial intelligence for intraoperative guidance: Using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg, 276(2), 363–9. doi:10.1097/SLA.0000000000004594
  • Mc Cradden MD, Baba A, Saha A, Ahmad S, Boparai K, Fadaiefard P, et al. (2020). Ethical concerns around use of artificial intelligence in health care research from the perspective of patients with meningioma, caregivers and health care providers: A qualitative study. Canadian Medical Association Open Access Journal, 8(1), E90-E95. doi:10.9778/cmajo.20190151
  • Mcintyre TP, Monahan TS, Villegas L, Doyle J, Jones DB. (2018). Teleconferencing surgery enhances effective communication and enriches medical education. Surgical Laparoscopy Endoscopy Percutaneous Techniques, 18(1), 45-48. doi:10.1097/SLE.0b013e31815746a8
  • Mehta N, Devarakonda MV. (2018). Machine learning, natural language programming, and electronic health records: The next step in the artificial intelligence journey? Journal of Allergy and Clinical Immunology, 141(6), 2019-2021. doi:10.1016/j.jaci.2018.02.025
  • Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. (2021). Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era. Current Oncology, 28(3), 1581-1607. doi:10.3390/curroncol28030149
  • Natarajan M. (2018). A review of robotics in dental implantology. J Indian Dental Assoc, 5(1), 14-17.
  • Niu H. (2023). Application and Prospect of Telesurgery: The Role of Artificial Intelligence. Artificial Intelligence in Medicine and Surgery - An Exploration of Current Trends, Potential Opportunities, and Evolving Threats, Volume 1. SP Stawicki (Ed). doi: 10.5772/intecopen.111494.
  • Neville CW. (2018). Telehealth: A balanced look at incorporating this technology into practice. SAGE Open Nurs, 23(4), 1-5. doi:10.1177/2377960818786504
  • Nudel J, Bishara AM, de Geus SWL, Patil P, Srinivasan J, Hess DT, et al. (2021). Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: An analysis of the MBSAQIP database. Surg Endosc, 35(1), 182–91. doi:10.1007/s00464-020-07378-x
  • Okgün Alcan A, Soyer O, Yavuz Van Giersbergen M, Solak M, Yoltay HE. (2019). Nurses’ opinions on robotic surgery. Kocaeli Universitesi Saglik Bilimleri Dergisi, 5(1), 5-9. doi:10.30934/kusbed.440490.
  • Öztepe Yeşilyurt K. (2023a). Robotic surgery training and the role of nurse in the robotic surgery process. O. Oral & AK Nalci (Ed). New Frontiers in Health Sciences, (1st edition, p. 79-92). İzmir: Duvar Publishing.
  • Öztepe Yeşilyurt K. (2023b). Overview of the use of 3D printer materials in surgical and nursing areas. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, 20, 663-676. doi:10.38079/igusabder.1168001
  • Öztepe Yeşilyurt KO, Celebi C, Catak T, Durmaz MO. (2024). Robotik cerrahinin etik yönü: Yaşanan deneyimlere bakış. Sağlık Bilimleri ve Klinik Araştırmaları Dergisi, 3(3), 113-127. doi:10.5281/zenodo.14576489
  • Pai SN, Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Yadav S. (2023). In the hands of a robot, from the operating room to the courtroom: the medicolegal considerations of robotic surgery. Cureus, 15(8), 1-6. doi: 10.7759/cureus.43634
  • Petkus H, Hoogewerf J, Wyatt JC. (2020). What do senior physicians think about AI and clinical decision support systems: Quantitative and qualitative analysis of data from specialty societies. Clinical Medicine, 20, 324–328. doi:10.7861/clinmed.2019-0317
  • Price WN, Cohen IG. (2019). Privacy in the age of medical big data. Nat Med [Internet], Jan 7, 25(1), 37–43. doi: 10.1038/s41591-018-0272-7
  • Sezer H, Şahin H. (2016). The using of 3D printing material in education: QUA VADIS? Tıp Eğitimi Dünyası, 46, 5-13. doi:10.25282/ted.256103
  • Shaikh HJ, Hasan SS, Woo JJ, Lavoie-Gagne O, Long WJ, Ramkumar PN. (2023). Exposure to extended reality and artificial intelligence-based manifestations: A primer on the future of hip and knee arthroplasty. J Arthroplasty, 38, 2096-104. doi:10.1016/j.arth.2023.05.015
  • Sood A, Abdollah F, Sammon JD, Arora N, Weeks M, Peabody JO, et al. (2017). Postoperative sepsis prediction in patients undergoing major cancer surgery. J Surg Res, 209, 60-9. doi:10.1016/j.jss.2016.09.059
  • Stark M, Mynbaev O, Malvasi A, Tinelli A. (2024). Revolutionizing patient care: The harmonious blend of artificial intelligence and surgical tradition. Int J Clin Exp Pathol, 17(2), 47-50. doi:10.62347/FRIC2771
  • Stivi T, Padawer D, Dirini N, Nachshon A, Batzofin BM, Ledot S. (2024). Using artificial intelligence to predict mechanical ventilation weaning success in patients with respiratory failure, including those with acute respiratory distress syndrome. J Clin Med, 13, 1505. doi:10.3390/jcm13051505 69.
  • Stonko DP, Dennis BM, Betzold RD, Peetz AB, Gunter OL, Guillamondegui OD. (2018). Artificial intelligence can predict daily trauma volume and average acuity. J Trauma Acute Care Surg, 85, 393-7. doi:10.1097/TA.0000000000001947
  • Tae K. (2020). Transoral robotic thyroidectomy using the da Vinci Single-port surgical system. Gland Surg, 9(3), 614-6. doi:doi.org/10.21037/gs.2020.03.37
  • Tan AJQ, Lee CCS, Lin PY, Cooper S, Lau LST, Chua WL, et al. (2017). Designing and evaluating the effectiveness of a serious game for safe administration of blood transfusion: A randomized controlled trial. Nurse Education Today, 55, 38-44. doi:10.1016/j.nedt.2017.04.027
  • Tanioka T, Osaka K, Locsin R, Yasuhara Y, Ito H. (2017). Recommended design and direction of development for humanoid nursing robots perspective from nursing researchers. Intelligent Control and Automation, 8(2), 96-110. doi:10.4236/ica.2017.82008
  • Tarcan GY, Balcik PY, Sebik NB. (2024). Artificial intelligence in healthcare in Türkiye and the World. Lokman Hekim Journal, 14(1), 50-60. doi:10.31020/mutftd.1278529
  • Tariq A, Gill AY, Hussain HK. (2023). Evaluating the potential of artificial intelligence in orthopedic surgery for value-based healthcare. Int J Multidiscip Sci, 2, 27-35. doi:10.47709/ijmdsa.v2i1.2394
  • Tejo-Otero A, Buj-Corral I, Fenollosa-Artés F. (2020). 3D Printing in medicine for preoperative surgical planning: A review. Ann Biomed Eng, 48(2), 536-55. doi:10.1007/s10439-019-02411-0
  • Tokat M, van Tilburg L, Koch AD, Spaander MC. (2022). Artificial intelligence in upper gastrointestinal endoscopy. Dig Dis, 40, 395-408. doi:10.1159/000518232
  • Tuncay I, Erdem AC. (2022). Robotic arm assisted total hip arthroplasty. TOTBİD Dergisi, 21, 90-94. doi:10.5578/totbid.dergisi.2022.14
  • Tzafetas M, Mitra A, Paraskevaidi M, Bodai Z, Kalliala I, Bowden S, et al. (2020). The Intelligent Knife (iKnife) and its intraoperative diagnostic advantage for the treatment of cervical disease. Proceedings of the National Academy of Sciences, 117(13), 7338-7346. doi:10.1073/pnas.1916960117
  • Une N, Kobayashi S, Kitaguchi D, Sunakawa T, Sasaki K, Ogane T, et al. (2024). Intraoperative artificial intelligence system identifying liver vessels in laparoscopic liver resection: A retrospective experimental study. Surg Endosc, 38, 1088–1095. doi:10.1007/s00464-023-10637-2
  • Uslu Y, Altınbaş Y, Özercan T, Giersbergen MY. (2019). The Process of nurse adaptation to robotic surgery: A qualitative study. The International Journal of Medical Robotics and Computer Assisted Surgery, 15, 1-7. doi:10.1002/rcs.1996.
  • Van de Sande D, van Genderen ME, Verhoef C, van Bommel J, Gommers D, van Unen E, et al. (2021). Predicting need for hospital-specific interventional care after surgery using electronic health record data. Surgery, 170(3), 790–6. doi:10.1016/j.surg.2021.05.005
  • Volkov M, Hashimoto DA, Rosman G, et al. (2017). Machine Learning and Coresets for Automated Real-Time Video Segmentation of Laparoscopic and Robot-Assisted Surgery. IEEE International conference on robotics and automation, (p. 754-759). Singapore.
  • Wei J, Zhang C, Ma L, Zhang C. (2022). Artificial intelligence algorithm-based intraoperative magnetic resonance navigation for glioma resection. Contrast Media & Molecular Imaging, 2022(1), 4147970, 8. doi:10.1155/2022/4147970
  • Wen R, Zheng K, Zhang Q, Zhou L, Liu Q, Yu G, et al. (2021). Machine learning-based random forest predicts anastomotic leakage after anterior resection for rectal cancer. Journal of Gastrointestinal Oncology, 12(3), 921–32. doi:10.21037/jgo-20-436
  • World Health Organisation (WHO). (2021). Ethics and governance of artificial intelligence for health: WHO guidance. Access date:10 August 2024, https://www.who.int/ publications/i/item/9789240029200
  • Wowra B, Muacevic A, Tonn JC. (2012). CyberKnife radiosurgery for brain metastases. Current and Future Management of Brain Metastasis, 25, 201-209. doi:10.1159/000331193
  • Wu X, Liu R, Yu J, Xu S, Yang C, Yang S, et al. (2018). Mixed reality technology launches in orthopedic surgery for comprehensive preoperative management of complicated cervical fractures. Surg Innov, 25(4), 421-22. doi:10.1177/1553350618761758
  • Wu Y, Wang F, Fan S, Chow JK. (2019). Robotics in dental implantology. Oral Maxillofac Surg Clin North Am, 31(3), 513-518. doi:10.1016/j.coms.2019.03.013
  • Yan L, Sha L, Zhao L, Li Y, Martinez Maldonado R, Chen G, et al. (2023). Practical and ethical challenges of large language models in education: A systematic scoping review. British Journal of Educational Technology, 55(1), 90–112. doi:10.1111/bjet.13370
  • Yavuz Karamanoğlu A. (2022). Telesurgery and responsibilities of the nurses. EJONS International Journal on Mathematic, Engineering and Natural Sciences, 6(21), 328–338. doi:10.38063/ejons.629
  • Yesantharao Y, Lee E, Kraenzlin F, Persing S, Chopra K, Shetty PN, et al. (2020). Surgical block time satisfaction: A multi-institutional experience across twelve surgical sisciplines. Perioper Care Oper Room Manag, 21, 100128. doi:10.1016/j.pcorm.2020.100128
  • Yeşilyurt KO, Durmaz MO. (2023). Knowledge levels of nursing students about robotic surgery and robotic surgery nursing. Kırşehir Ahi Evran University Journal of Health Sciences, 7(1), 28-39.
  • Yılmaz A, Ölçer I (2021). Yapay zekanın cerrahi uygulamalara entegrasyonu. Beykent Üniversitesi Fen ve Muhendislik Bilimleri Dergisi, 13(2), 21-27. doi:10.20854/bujse.873770
  • Yoshida S, Sugimoto M, Fukuda S, Taniguchi N, Saito K, Fujii Y. (2019). Mixed reality computed tomography-based surgical planning for partial nephrectomy using a head-mounted holographic computer. Int J Urol, 26(6), 681-2. doi:10.1111/iju.13954
  • Yurttaş A, Kabak Solak T. (2023). Metaverse and nursing education. Journal of General Health Sciences (JGEHES), 5(3), 442-451. doi:10.51123/jgehes.2023.105
  • Zhang J, Zhang Z. (2023). Ethics and governance of trustworthy medical artificial intelligence. BMC Med Inform Decis Mak, 23(1), 7. doi:10.1186/s12911-023-02103-9

Artificial Intelligence Applications in Global Surgery and Surgical Nursing

Yıl 2025, Cilt: 8 Sayı: 3, 413 - 427, 26.12.2025
https://doi.org/10.54189/hbd.1606325

Öz

Artificial Intelligence technologies, which show a rapid progress today, show an effective and successful progress in the field of surgery as in every field. This study aimed to reveal the effects of Artificial Intelligence technologies and applications on global surgery and surgical nursing. In the light of the data obtained by searching the literature in Google Scholar, Pubmed, Scopus, Web of Science databases, the benefits and limitations of artificial intelligence technologies in the field of global surgery and surgical nursing were reviewed. It is discussed that artificial intelligence technologies, which are widely used in the surgical field for surgeons, are very successful in practice but may cause some ethical problems. In terms of surgical nursing, it is seen that artificial intelligence applications are limited, they are successful in student education. These technologies bring some new responsibilities to nurses in the clinic. Although Artificial Intelligence technologies are widely used in surgery, their use in the field of surgical nursing is not yet at the desired level. In order to increase the use of these technologies within the framework of ethical principles in the field of nursing, necessary trainings should be provided and nurses should have knowledge in this field.

Kaynakça

  • Aggarwal R, Sounderajah V, Martin G, Ting DSW, Karthikesalingam A, King D, et al. (2021). Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit Med, 4(1), 1-23. doi:10.1038/s41746-021-00438-z
  • Aimar A, Palermo A, Innocenti B. (2019). The Role of 3D printing in medical applications: A state of the art. Journal Of Healthcare Engineering, 2019(1), 1-14. doi:10.1155/2019/5340616
  • Ak G, Gursoy B, Yenidunya F, Yildirim M, Catal E. (2017). Investigation of knowledges, attitudes and behaviors of nurses and nursing students in different generations about robotic surgery. IMCOFE, Rome, Italy. (Access date:6.08.2024). https://www.imcofe.org/5imcofe/sayfa/tam-metinkitaplari/15
  • Akıncı D, Antonoli T. (2020). Ethical considerations for artificial intelligence: an overview of the current radiology landscape. Diagnostic Interv Radiol, Sep 8, 26(5), 504–11. doi: 10.5152/dir.2020.19279
  • Amin A, Cardoso SA, Suyambu J, Abdus Saboor H, Cardoso RP, Husnain A, et al. (2024). Future of artificial intelligence in surgery: A narrative review. Cureus, 16(1), 1-9. doi: 10.7759/cureus.51631
  • Arslan N, Yaylaci B, Eyupoglu ND, Kurtuncu M. (2018). Emerging technology in health: Three-dimensional printing. International Journal Of Printing Technologies And Digital Industry, 2(2), 99-110.
  • Awuah WA, Adebusoye FT, Wellington J, David L, Salam A, Yee ALW, et al. (2024). Recent outcomes and challenges of artificial intelligence, machine learning, and deep learning in neurosurgery. World Neurosurgery: X, 23, 1-9. doi:10.1016/j.wnsx.2024.100301
  • Aydın L, Küçük S. (2017). Design and construction of ankle foot orthosis by means of three dimensional printers. Journal of Polytechnic, 20(1), 1-8. doi: 10.2339/2017.20.1
  • Azimi K, Honaker MD, Chalil Madathil S, Khasawneh MT. (2020). Post-operative infection prediction and risk factor analysis in colorectal surgery using data mining techniques: A pilot study. Surgical Infections, 21(9), 784-792. doi:10.1089/sur.2019.138
  • Bellini V, Valente M, Turetti M, Del Rio P, Saturno F, Maffezzoni M, et al. (2022). Current applications of artificial intelligence in bariatric surgery. Obesity Surgery, 32(8), 2717-2733. doi:10.1007/s11695-022-06100-1
  • Bhandari M, Zeffiro T, Reddiboina M. (2020). Artificial intelligence and robotic surgery: Current perspective and future directions. Current Opinion in Urology, 30(1), 48-54. doi:10.1097/MOU.0000000000000692
  • Bhbosale S, Pujari V, Multani Z. (2020). Advantages and disadvantages of artificial intellegence. Aayushi International Interdisciplinary Research Journal, 77, 227-230.
  • Bian Y, Xiang Y, Tong B, Feng B, Weng X. (2020). Artificial intelligence-assisted system in postoperative follow-up of orthopedic patients: Exploratory quantitative and qualitative study. J Med Internet Res, 22(5), 1-8. doi: 10.2196/16896
  • Biglino G, Capelli C, Koniordou D, Robertshaw D, Leaver LK, Scievano S, et al. (2017). Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenital Heart Disease, 12, 113-118. doi:10.1111/chd.12414
  • Binkley J, Bukoski AD, Doty J, Crane M, Barnes SL, Quick JA. (2019). Surgical simulation: Markers of proficiency. J Surg Educ, 76, 234-41. doi:10.1016/j.jsurg.2018.05.018
  • Boada I, Rodriguez-Benitez A, Garcia-Gonzalez JM, Olivet J, Carreras V, Sbert M. (2015). Using a serious game to complement CPR instruction in a nurse faculty. Computer Methods and Programs in Biomedicine, 122(2), 282-291. doi:10.1016/j.cmpb.2015.08.006
  • Bodenstedt S, Wagner M, Müller-Stich BP, Weitz J, Speidel S. (2020). Artificial intelligence-assisted surgery: Potential and challenges. Visc Med, 36(6), 450-455. doi:10.1159/000511351.
  • Braun M, Hummel P, Beck S, Dabrock P. (2020). Primer on an ethics of AI-based decision support systems in the clinic. J Med Ethics, 47(12), 1-8. doi:10.1136/medethics-2019-105860
  • Briceño J, Calleja R, Hervás C. (2022). Artificial intelligence and liver transplantation: Looking for the best donorrecipient pairing. Hepatobiliary Pancreatic Diseases International, 21(4), 347-53. doi:10.1016/j.hbpd.2022.03.001
  • Butt AL, Kardong-Edgren S, Ellertson A. (2018). Using game-based virtual reality with haptics for skill acquisition. Clinical Simulation in Nursing, 16(1), 25-32. doi:10.1016/j.ecns.2017.09.010
  • Cao Y, Fang X, Ottosson J, Näslund E, Stenberg E. (2019). A Comparative study of machine learning algorithms in predicting severe complications after bariatric surgery. J Clin Med, 8(5), 1-16. doi:10.3390/jcm8050668
  • Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, et al. (2021). AI applications to medical images: from machine learning to deep learning. Physica Medica, 83, 9-24. doi:10.1016/j.ejmp.2021.02.006
  • Chang CY, Sung HY, Guo JL, Chang BY, Kuo FR. (2022). Effects of spherical video-based virtual reality on nursing students’ learning performance in childbirth education training. Interactive Learning Environments, 30(3), 400-416. doi:10.1080/10494820.2019.1661854
  • Chen D, Afzal N, Sohn S, Habermann EB, Naessens JM, Larson DW, et al. (2018). Postoperative bleeding risk prediction for patients undergoing colorectal surgery. Surgery, 164(6), 1209–16. doi:10.1016/j.surg.2018.05.043
  • Chen IY, Szolovits P, Ghassemi M. (2019). Can AI help reduce disparities in general medical and mental health care? AMA J Ethics, 21(2), E167–179.
  • Clusmann J, Kolbinger FR, Muti HS, Carrero ZI, Eckardt JN, Laleh NG, et al. (2023). The Future landscape of large language models in medicine. Commun Med, 3(1), 141. doi:10.1038/s43856-023-00370-1
  • Cobianchi L, Verde JM, Loftus TJ, Piccolo D, Dal Mas F, Mascagni P, et al. (2022). Artificial intelligence and surgery: Ethical dilemmas and open issues. J Am Coll Surg, 235(2), 268–75. doi:10.1097/XCS.0000000000000242
  • Creighton FX, Unberath M, Song T, Zhao Z, Armand M, Carey J. (2020). Early feasibility studies of augmented reality navigation for lateral skull base surgery. Otol Neurotol, 41(7), 883-8. doi:10.1097/MAO.0000000000002724
  • Elendu C, Amaechi DC, Elendu TC, Jingwa KA, Okoye OK, John Okah M, et al. (2023). Ethical implications of AI and robotics in healthcare: A review. Medicine (Baltimore), 102(50), 1-7. doi:10.1097/MD.0000000000036671
  • Fan X, Zhu Q, Tu P, Joskowicz L, Chen X. (2023). A Review of advances in image-guided orthopedic surgery. Physics in Medicine & Biology, 68(2), 02TR01-1-13. doi:10.1088/1361-6560/acaae9
  • Froiio C, Berlth F, Capovilla G, Tagkalos E, Hadzijusufovic E, Mann C, et al. (2022). Robotic-assisted surgery for esophageal submucosal tumors: A ainglecenter case series. Updates Surg, 74(3), 1043-54. doi:10.1007/s13304-022-01247-z
  • Garcia Nespolo R, Yi D, Cole E, Valikodath N, Luciano C, Leiderma YI. (2022). Evaluation of artificial intelligence-based intraoperative guidance tools for phacoemulsification cataract surgery. JAMA Ophthalmology, 140(2), 170–7. doi:10.1001/jamaophthalmol.2021.5742
  • Gökçen Gökalp M, Uzer MA. (2024). Nursing care in the age of artificial intelligence. University of Health Sciences Journal of Nursing, 6(1), 89-94. doi:10.48071/sbuhemsirelik.1349981
  • Gonçalves-Bradley DC, Lannin NA, Clemson L, Cameron ID, Shepperd S. (2022). Discharge Planning from Hospital. Cochrane Database Syst Rev, 2(2), 10-15. doi:10.1002/14651858.CD000313.pub6
  • Griffin F. (2021). Artificial intelligence and liability in healthcare. Health Matrix, 31, 65-106.
  • Grote T, Berens P. (2020). On the ethics of algorithmic secision-making in healthcare. J Med Ethics, 46, 205–211. doi:10.1136/medethics-2019-105586
  • Gunay Ismailoglu E, Zaybak A. (2018). Comparison of the effectiveness of a virtual simulator with a plastic arm model in teaching intravenous catheter insertion skills. CIN: Computers, Informatics, Nursing, 36(2), 98–105. doi:10.1097/CIN.0000000000000405
  • Gündoğdu H, Dikmen Y. (2017). Hemsirelik egitiminde simulasyon: sanal gerceklik ve haptik sistemler. Journal of Human Rhythm, 3(4), 173-176.
  • Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. (2024). Artificial intelligence in surgery: The Future is now. Eur Surg Res, 65(1), 22–39. doi:10.1159/000536393
  • Hamilton A. (2024). The Future of artificial intelligence in surgery. Cureus, 16(7), e63699. doi:10.7759/cureus.63699
  • Hashimoto DA, Rosman G, Rus D, Meireles OR. (2018). Artificial intelligence in surgery: Promises and perils. Ann Surg, 268(1), 70-76. doi:10.1097/SLA.0000000000002693.
  • Hashimoto DA, Rosman G, Witkowski ER, Stafford C, Navarette-Welton AJ, Rattner DW, et al. (2019). Computer vision analysis of intraoperative video: Automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg, 270(3), 414–21. doi: 10.1097/SLA.0000000000003460
  • He B, Smet MD, Sodhi M, Etminan M, Maberley D. (2021). A Review of robotic surgical training: Establishing a curriculum and credentialing process in ophthalmology. Eye, 35, 3192-3201. doi:10.1038/s41433-021- 01599-7.
  • Hindocha S, Badea C. (2022). Moral exemplars for the virtuous machine: The Clinician’s role in ethical artificial intelligence for healthcare. AI Ethics, 2(1), 167–75. doi:10.1007/s43681-021-00089-6
  • Hu HZ, Feng XB, Shao ZW, Xie M, Xu S, Wu XH, et al. (2019). Application and prospect of mixed reality technology in medical field. Curr Med Sci, 39(1), 1-6. doi:10.1007/s11596-019-1992-8
  • Jung EY, Park DK, Lee YH, Jo HS, Lim YS, Park RW. (2012). Evaluation of practical exercises using an ıntravenous simulator incorporating virtual reality and haptics device technologies. Nurse Education Today, 32(4), 458-463. doi:10.1016/j.nedt.2011.05.012
  • Kandemir F, Azizoglu F, Terzi B. (2023). Use of artificial intelligence and robotic technologies in nursing. Journal of Intensive Care Nursing, 27(2), 118-127.
  • Kang MJ, De Gagne JC, Kang HS. (2016). Perioperative nurses’ work experience with robotic surgery a focus group study. Computers Informatics Nursing, 34(4), 152-58. doi:10.1097/CIN.0000000000000224.
  • Kawka M, Gall TMH, Fang C, Liu R, Jiao LR. (2022). Intraoperative video analysis and machine learning models will change the future of surgical training. Intelligent Surgery, 1, 13–5. doi:10.1016/j.isurg.2021.03.001
  • Keles H. (2022). Artificial intelligence applications in medicine. Kirikkale Universitesi Tip Fakultesi Dergisi, 24(3), 604-613. doi:10.24938/kutfd.1214512
  • Khanzode KCA, Sarode RD. (2020). Advantages and disadvantages of artificial intelligence and machine learning: A literature review. International Journal of Library & Information Science (IJLIS), 9(1), 30-36.
  • Kılınç Akman E, Balcı F, Kanan N. (2022). The Importance of using the second safe surgical checklist to robot-assisted surgery (the second “timeout”). Fenerbahce University Journal of Health Sciences, 2(2), 539-547. doi:10.56061/fbujohs.1141442
  • Ku EK, Min SK, Shin DH, Chung YS, Kim YJ, Kim KG, et al. (2021). Artificial intelligence for intraoperative guidance: Using an object detection model in conjunction with data augmentation to detect parathyroid glands during thyroidectomy. Lancet, 1-28. doi:10.2139/ssrn.3916131
  • Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C, et al. (2023). Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLOS Digital Health, 2(2), 1-12. doi:10.1371/journal.pdig.0000198
  • Kuzu Demir EB, Caka C, Tugtekin U, Demir K, Islamoglu H, Kuzu A. (2016). The Use of three dimensional printing technologies in education: Practices in Turkey. Ege Eğitim Dergisi, 17(2), 481-503. doi:10.12984/egeefd.280754
  • Lambrechts A, Wirix-Speetjens R, Maes F, Van Huffel S. (2022). Artificial intelligence based patient-specific preoperative planning algorithm for total knee arthroplasty. Front Robot AI, 9, 840282. doi:10.3389/frobt.2022.840282
  • Li A, Javidan AP, Namazi A, Forbes T. (2024). Development of an artificial intelligence tool for intraoperative guidance during endovascular abdominal aortic aneurysm repair. Annals of Vascular Surgery, 99, 96-104. doi:10.1016/j.avsg.2023.08.027
  • Li A, Javidan AP, Namazi B, Madani A, Forbes TL. (2022). Development of an artificial intelligence tool for intraoperative guidance during endovascular aneurysm repair. J Vasc Surg, 76(4), e114 - e115. doi:10.1016/j.jvs.2022.07.034
  • Li S, Deng YQ, Zhu ZL, Hua HL, Tao ZZ. (2021). A Comprehensive review on radiomics and deep learning for nasopharyngeal carcinoma imaging. Diagnostics (Basel), 11(9), 1523-1532. doi:10.3390/diagnostics11091523
  • Lioce L, Maddux G, Goddard N, Fogle I, Fogle M, Gunter S, et al. (2020). Application of 3D printing in the development of training simulations for nursing students. Proceedings of the 9th International Workshop on Innovative Simulation for Healthcare (IWISH 2020). Alabama, p.7-12. doi:10.46354/i3m.2020.iwish.002.
  • Liu H, Baena FRY. (2020). Automatic markerless registration and tracking of the bone for computer-assisted orthopaedic surgery. IEEE Access, 8, 42010-42020. doi:10.1109/ACCESS.2020.2977072
  • Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. (2021). Application of artificial intelligence in medicine: An overview. Curr Med Sci, 41(6), 1105-15. doi:10.1007/s11596-021-2474-3
  • Liyanage H, Liaw S, Jonnagaddala J, Schreiber R, Kuziemsky C, Terry AL, et al. (2019). Artificial intelligence in primary health care: Perceptions, issues, and challenges. Yearbook of Medical Informatics, 28(01), 041-046. doi:10.1055/s-0039-1677901
  • Lobo A, Barbosa A, Guimarães T, Lopes J, Peixoto H, Santos MF. (2023). Better medical efficiency by means of hospital bed management optimization: A comparison of artificial intelligence techniques. Prog Artif Intell, 1411, 260-73. doi:10.1007/978-3-031-49011-8_21
  • Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, et al. (2020). Artificial intelligence and surgical decision-making. JAMA Surgery, 155(2), 148-158. doi:10.1001/jamasurg.2019.4917
  • Ludbrook GL. (2022). The Hidden pandemic: The cost of postoperative complications. Current Anesthesiology Reports, 12(1), 1–9. doi:10.1007/s40140-021-00493-y
  • Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH, et al. (2022). Artificial intelligence for intraoperative guidance: Using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg, 276(2), 363–9. doi:10.1097/SLA.0000000000004594
  • Mc Cradden MD, Baba A, Saha A, Ahmad S, Boparai K, Fadaiefard P, et al. (2020). Ethical concerns around use of artificial intelligence in health care research from the perspective of patients with meningioma, caregivers and health care providers: A qualitative study. Canadian Medical Association Open Access Journal, 8(1), E90-E95. doi:10.9778/cmajo.20190151
  • Mcintyre TP, Monahan TS, Villegas L, Doyle J, Jones DB. (2018). Teleconferencing surgery enhances effective communication and enriches medical education. Surgical Laparoscopy Endoscopy Percutaneous Techniques, 18(1), 45-48. doi:10.1097/SLE.0b013e31815746a8
  • Mehta N, Devarakonda MV. (2018). Machine learning, natural language programming, and electronic health records: The next step in the artificial intelligence journey? Journal of Allergy and Clinical Immunology, 141(6), 2019-2021. doi:10.1016/j.jaci.2018.02.025
  • Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. (2021). Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era. Current Oncology, 28(3), 1581-1607. doi:10.3390/curroncol28030149
  • Natarajan M. (2018). A review of robotics in dental implantology. J Indian Dental Assoc, 5(1), 14-17.
  • Niu H. (2023). Application and Prospect of Telesurgery: The Role of Artificial Intelligence. Artificial Intelligence in Medicine and Surgery - An Exploration of Current Trends, Potential Opportunities, and Evolving Threats, Volume 1. SP Stawicki (Ed). doi: 10.5772/intecopen.111494.
  • Neville CW. (2018). Telehealth: A balanced look at incorporating this technology into practice. SAGE Open Nurs, 23(4), 1-5. doi:10.1177/2377960818786504
  • Nudel J, Bishara AM, de Geus SWL, Patil P, Srinivasan J, Hess DT, et al. (2021). Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: An analysis of the MBSAQIP database. Surg Endosc, 35(1), 182–91. doi:10.1007/s00464-020-07378-x
  • Okgün Alcan A, Soyer O, Yavuz Van Giersbergen M, Solak M, Yoltay HE. (2019). Nurses’ opinions on robotic surgery. Kocaeli Universitesi Saglik Bilimleri Dergisi, 5(1), 5-9. doi:10.30934/kusbed.440490.
  • Öztepe Yeşilyurt K. (2023a). Robotic surgery training and the role of nurse in the robotic surgery process. O. Oral & AK Nalci (Ed). New Frontiers in Health Sciences, (1st edition, p. 79-92). İzmir: Duvar Publishing.
  • Öztepe Yeşilyurt K. (2023b). Overview of the use of 3D printer materials in surgical and nursing areas. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, 20, 663-676. doi:10.38079/igusabder.1168001
  • Öztepe Yeşilyurt KO, Celebi C, Catak T, Durmaz MO. (2024). Robotik cerrahinin etik yönü: Yaşanan deneyimlere bakış. Sağlık Bilimleri ve Klinik Araştırmaları Dergisi, 3(3), 113-127. doi:10.5281/zenodo.14576489
  • Pai SN, Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Yadav S. (2023). In the hands of a robot, from the operating room to the courtroom: the medicolegal considerations of robotic surgery. Cureus, 15(8), 1-6. doi: 10.7759/cureus.43634
  • Petkus H, Hoogewerf J, Wyatt JC. (2020). What do senior physicians think about AI and clinical decision support systems: Quantitative and qualitative analysis of data from specialty societies. Clinical Medicine, 20, 324–328. doi:10.7861/clinmed.2019-0317
  • Price WN, Cohen IG. (2019). Privacy in the age of medical big data. Nat Med [Internet], Jan 7, 25(1), 37–43. doi: 10.1038/s41591-018-0272-7
  • Sezer H, Şahin H. (2016). The using of 3D printing material in education: QUA VADIS? Tıp Eğitimi Dünyası, 46, 5-13. doi:10.25282/ted.256103
  • Shaikh HJ, Hasan SS, Woo JJ, Lavoie-Gagne O, Long WJ, Ramkumar PN. (2023). Exposure to extended reality and artificial intelligence-based manifestations: A primer on the future of hip and knee arthroplasty. J Arthroplasty, 38, 2096-104. doi:10.1016/j.arth.2023.05.015
  • Sood A, Abdollah F, Sammon JD, Arora N, Weeks M, Peabody JO, et al. (2017). Postoperative sepsis prediction in patients undergoing major cancer surgery. J Surg Res, 209, 60-9. doi:10.1016/j.jss.2016.09.059
  • Stark M, Mynbaev O, Malvasi A, Tinelli A. (2024). Revolutionizing patient care: The harmonious blend of artificial intelligence and surgical tradition. Int J Clin Exp Pathol, 17(2), 47-50. doi:10.62347/FRIC2771
  • Stivi T, Padawer D, Dirini N, Nachshon A, Batzofin BM, Ledot S. (2024). Using artificial intelligence to predict mechanical ventilation weaning success in patients with respiratory failure, including those with acute respiratory distress syndrome. J Clin Med, 13, 1505. doi:10.3390/jcm13051505 69.
  • Stonko DP, Dennis BM, Betzold RD, Peetz AB, Gunter OL, Guillamondegui OD. (2018). Artificial intelligence can predict daily trauma volume and average acuity. J Trauma Acute Care Surg, 85, 393-7. doi:10.1097/TA.0000000000001947
  • Tae K. (2020). Transoral robotic thyroidectomy using the da Vinci Single-port surgical system. Gland Surg, 9(3), 614-6. doi:doi.org/10.21037/gs.2020.03.37
  • Tan AJQ, Lee CCS, Lin PY, Cooper S, Lau LST, Chua WL, et al. (2017). Designing and evaluating the effectiveness of a serious game for safe administration of blood transfusion: A randomized controlled trial. Nurse Education Today, 55, 38-44. doi:10.1016/j.nedt.2017.04.027
  • Tanioka T, Osaka K, Locsin R, Yasuhara Y, Ito H. (2017). Recommended design and direction of development for humanoid nursing robots perspective from nursing researchers. Intelligent Control and Automation, 8(2), 96-110. doi:10.4236/ica.2017.82008
  • Tarcan GY, Balcik PY, Sebik NB. (2024). Artificial intelligence in healthcare in Türkiye and the World. Lokman Hekim Journal, 14(1), 50-60. doi:10.31020/mutftd.1278529
  • Tariq A, Gill AY, Hussain HK. (2023). Evaluating the potential of artificial intelligence in orthopedic surgery for value-based healthcare. Int J Multidiscip Sci, 2, 27-35. doi:10.47709/ijmdsa.v2i1.2394
  • Tejo-Otero A, Buj-Corral I, Fenollosa-Artés F. (2020). 3D Printing in medicine for preoperative surgical planning: A review. Ann Biomed Eng, 48(2), 536-55. doi:10.1007/s10439-019-02411-0
  • Tokat M, van Tilburg L, Koch AD, Spaander MC. (2022). Artificial intelligence in upper gastrointestinal endoscopy. Dig Dis, 40, 395-408. doi:10.1159/000518232
  • Tuncay I, Erdem AC. (2022). Robotic arm assisted total hip arthroplasty. TOTBİD Dergisi, 21, 90-94. doi:10.5578/totbid.dergisi.2022.14
  • Tzafetas M, Mitra A, Paraskevaidi M, Bodai Z, Kalliala I, Bowden S, et al. (2020). The Intelligent Knife (iKnife) and its intraoperative diagnostic advantage for the treatment of cervical disease. Proceedings of the National Academy of Sciences, 117(13), 7338-7346. doi:10.1073/pnas.1916960117
  • Une N, Kobayashi S, Kitaguchi D, Sunakawa T, Sasaki K, Ogane T, et al. (2024). Intraoperative artificial intelligence system identifying liver vessels in laparoscopic liver resection: A retrospective experimental study. Surg Endosc, 38, 1088–1095. doi:10.1007/s00464-023-10637-2
  • Uslu Y, Altınbaş Y, Özercan T, Giersbergen MY. (2019). The Process of nurse adaptation to robotic surgery: A qualitative study. The International Journal of Medical Robotics and Computer Assisted Surgery, 15, 1-7. doi:10.1002/rcs.1996.
  • Van de Sande D, van Genderen ME, Verhoef C, van Bommel J, Gommers D, van Unen E, et al. (2021). Predicting need for hospital-specific interventional care after surgery using electronic health record data. Surgery, 170(3), 790–6. doi:10.1016/j.surg.2021.05.005
  • Volkov M, Hashimoto DA, Rosman G, et al. (2017). Machine Learning and Coresets for Automated Real-Time Video Segmentation of Laparoscopic and Robot-Assisted Surgery. IEEE International conference on robotics and automation, (p. 754-759). Singapore.
  • Wei J, Zhang C, Ma L, Zhang C. (2022). Artificial intelligence algorithm-based intraoperative magnetic resonance navigation for glioma resection. Contrast Media & Molecular Imaging, 2022(1), 4147970, 8. doi:10.1155/2022/4147970
  • Wen R, Zheng K, Zhang Q, Zhou L, Liu Q, Yu G, et al. (2021). Machine learning-based random forest predicts anastomotic leakage after anterior resection for rectal cancer. Journal of Gastrointestinal Oncology, 12(3), 921–32. doi:10.21037/jgo-20-436
  • World Health Organisation (WHO). (2021). Ethics and governance of artificial intelligence for health: WHO guidance. Access date:10 August 2024, https://www.who.int/ publications/i/item/9789240029200
  • Wowra B, Muacevic A, Tonn JC. (2012). CyberKnife radiosurgery for brain metastases. Current and Future Management of Brain Metastasis, 25, 201-209. doi:10.1159/000331193
  • Wu X, Liu R, Yu J, Xu S, Yang C, Yang S, et al. (2018). Mixed reality technology launches in orthopedic surgery for comprehensive preoperative management of complicated cervical fractures. Surg Innov, 25(4), 421-22. doi:10.1177/1553350618761758
  • Wu Y, Wang F, Fan S, Chow JK. (2019). Robotics in dental implantology. Oral Maxillofac Surg Clin North Am, 31(3), 513-518. doi:10.1016/j.coms.2019.03.013
  • Yan L, Sha L, Zhao L, Li Y, Martinez Maldonado R, Chen G, et al. (2023). Practical and ethical challenges of large language models in education: A systematic scoping review. British Journal of Educational Technology, 55(1), 90–112. doi:10.1111/bjet.13370
  • Yavuz Karamanoğlu A. (2022). Telesurgery and responsibilities of the nurses. EJONS International Journal on Mathematic, Engineering and Natural Sciences, 6(21), 328–338. doi:10.38063/ejons.629
  • Yesantharao Y, Lee E, Kraenzlin F, Persing S, Chopra K, Shetty PN, et al. (2020). Surgical block time satisfaction: A multi-institutional experience across twelve surgical sisciplines. Perioper Care Oper Room Manag, 21, 100128. doi:10.1016/j.pcorm.2020.100128
  • Yeşilyurt KO, Durmaz MO. (2023). Knowledge levels of nursing students about robotic surgery and robotic surgery nursing. Kırşehir Ahi Evran University Journal of Health Sciences, 7(1), 28-39.
  • Yılmaz A, Ölçer I (2021). Yapay zekanın cerrahi uygulamalara entegrasyonu. Beykent Üniversitesi Fen ve Muhendislik Bilimleri Dergisi, 13(2), 21-27. doi:10.20854/bujse.873770
  • Yoshida S, Sugimoto M, Fukuda S, Taniguchi N, Saito K, Fujii Y. (2019). Mixed reality computed tomography-based surgical planning for partial nephrectomy using a head-mounted holographic computer. Int J Urol, 26(6), 681-2. doi:10.1111/iju.13954
  • Yurttaş A, Kabak Solak T. (2023). Metaverse and nursing education. Journal of General Health Sciences (JGEHES), 5(3), 442-451. doi:10.51123/jgehes.2023.105
  • Zhang J, Zhang Z. (2023). Ethics and governance of trustworthy medical artificial intelligence. BMC Med Inform Decis Mak, 23(1), 7. doi:10.1186/s12911-023-02103-9
Toplam 115 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cerrahi Hastalıklar Hemşireliği, Hemşirelik Eğitimi
Bölüm Derleme
Yazarlar

Kıymet Öztepe Yeşilyurt 0000-0003-4106-8864

Gönderilme Tarihi 23 Aralık 2024
Kabul Tarihi 25 Ocak 2025
Yayımlanma Tarihi 26 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 3

Kaynak Göster

APA Öztepe Yeşilyurt, K. (2025). Artificial Intelligence Applications in Global Surgery and Surgical Nursing. Hemşirelik Bilimi Dergisi, 8(3), 413-427. https://doi.org/10.54189/hbd.1606325