Derleme
BibTex RIS Kaynak Göster

ET VE ET ÜRÜNLERİNDE TÜR TAYİNİNDE KULLANILAN BAZI KROMATOGRAFİK YÖNTEMLER

Yıl 2022, Cilt: 4 Sayı: 1, 62 - 70, 23.06.2022
https://doi.org/10.51973/head.1118666

Öz

Ülkemizde et ve et ürünleri katma değerli gıdalar içerisinde yer almaktadır. Bundan dolayı et işleme ve ürüne dönüştürme süreçleri maliyetlidir. Bazı işletmeler tarafından değeri yüksek gıda ürünleri içerisine daha ucuz ikame maddeleri katkılanarak daha fazla kâr elde etme ve ürün maliyetini düşürmek amacıyla taklit-tağşiş vb çeşitli hilelere başvurulmaktadır. Domuz eti veya kanatlı etlerinin sığır etine göre daha ucuz olması sebebiyle genellikle kırmızı etten yapılan ürünlerin içerisine karıştırılarak yasa dışı üretim gerçekleştirilmektedir. Müslüman ve Yahudi tüketicilerin dini inançları gereği domuz eti ve türevlerine karşı diyet kısıtlamaları vardır. Buna ek olarak et ürünlerinde yapılan taklit ve tağşişler bazı alerjik hastalıkları olan tüketicilerin sağlığını da olumsuz etkileyebilmektedir. Ancak, et endüstrisindeki gıda tahrifatının son yıllarda dünya genelinde daha da artış gösterdiği bildirilmektedir. Et ürünlerinde tür belirleme yöntemleri ve taklit-tağşiş gibi hileleri tespit etme metotları da uzmanlık ve teknik donanım gerektirmektedir. Bu derleme çalışmasında et ve et ürünlerinde kimlik doğrulaması ve taklit-tağşiş unsurlarının belirlenmesinde kullanılan kromatografik yöntemler ele alınmıştır.

Kaynakça

  • Aguilera, J. M. (2005). Why food microstructure? Journal of food engineering, 67(1-2), 3-11.
  • Ali, M. M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2020). Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science & Technology, 99, 1-10.
  • Al-Bukhaiti, W. Q., Noman, A., Qasim, A. S., & Al-Farga, A. (2017). Gas chromatography: Principles, advantages and applications in food analysis. International Journal of Agriculture Innovations and Research, 6(1), 123-128.
  • Alikord, M., Momtaz, H., Kadivar, M., & Rad, A. H. (2018). Species identification and animal authentication in meat products: a review. Journal of Food Measurement and Characterization, 12(1), 145-155.
  • Al-Rashood, K. A., Abdel-Moety, E. M., Rauf, A., Abou-Shaaban, R. R., & Al-Khamis, K. I. (1995). Triacylglycerols profiling by high performance liquid chromatography: A tool for detection of pork fat (lard) in processed foods. Journal of Liquid Chromatography & Related Technologies, 18(13), 2661-2673.
  • Anonim, (2021). “Bakan Pakdemirli: 91 firmaya ait 113 parti ürünü daha ifşa ediyoruz”, https://www.tarimorman.gov.tr/Haber/4729/Bakan-Pakdemirli-91-Firmaya-Ait-113-Parti-Urunu-Daha-Ifsa-Ediyoruz, Son Eri-şim Tarihi: 21.06.2022
  • Ardrey, R. E. (2003). Liquid chromatography-mass spectrometry: an introduction (Vol. 2). John Wiley & Sons.
  • Bai, Y., Liu, H., Zhang, B., Zhang, J., Wu, H., Zhao, S., ... & Zhao, Y. (2021). Research Progress on Traceability and Authen-ticity of Beef. Food Reviews International, 1-21. doi/10.1080/87559129.2021.1936000
  • Ballin, N. Z., Vogensen, F. K., & Karlsson, A. H. (2009). Species determination–Can we detect and quantify meat adultera-tion? Meat science, 83(2), 165-174.
  • Ballin, N. Z. (2010). Authentication of meat and meat products. Meat science, 86(3), 577-587.
  • Belitz, H. D., Grosch, W., & Schieberle, P. (2008). Food chemistry. Springer Science & Business Media.
  • Boselli, E., Pacetti, D., Curzi, F., & Frega, N. G. (2008). Determination of phospholipid molecular species in pork meat by high performance liquid chromatography tandem mass spectrometry and evaporative light scattering detection. Meat science, 78(3), 305-313.
  • Cavalli, J. F., Fernandez, X., Lizzani-Cuvelier, L., & Loiseau, A. M. (2003). Comparison of static headspace, headspace solid phase microextraction, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of French olive oils. Journal of agricul-tural and food chemistry, 51(26), 7709-7716.
  • Chou, C. C., Lin, S. P., Lee, K. M., Hsu, C. T., Vickroy, T. W., & Zen, J. M. (2007). Fast differentiation of meats from fifteen animal species by liquid chromatography with electrochemical detection using copper nanoparticle plated electrodes. Journal of Chromatography B, 846(1-2), 230-239.
  • Dettmer-Wilde, K., & Engewald, W. (2014). Practical gas chromatography. In A Comprehensive Reference (p. 902). Springer Berlin.
  • Fadzlillah, N. A., Man, Y. B. C., Jamaludin, M. A., Rahman, S. A., & Al-Kahtani, H. A. (2011). Halal food issues from Islamic and modern science perspectives. In 2nd international conference on humanities, historical and social sciences (Vol. 17, pp. 159-163). Singapore: IACSIT Press.
  • Fiehn, O. (2016). Metabolomics by gas chromatography mass spectrometry: combined targeted and untargeted profiling. Current protocols in molecular biology, 114(1), 30-4.
  • Figueiredo, I. L., Claus, T., Júnior, O. O. S., Almeida, V. C., Magon, T., & Visentainer, J. V. (2016). Fast derivatization of fatty acids in different meat samples for gas chromatography analysis. Journal of Chromatography A, 1456, 235-241.
  • Fornal, E., & Montowska, M. (2019). Species specific peptide-based liquid chromatography mass spectrometry monitoring of three poultry species in processed meat products. Food Chemistry, 283, 489-498. Giaretta, N., Di Giuseppe, A. M., Lippert, M., Parente, A., & Di Maro, A. (2013). Myoglobin as marker in meat adulteration: A UPLC method for determining the presence of pork meat in raw beef burger. Food chemistry, 141(3), 1814-1820.
  • Gliszczyńska-Świgło, A., & Chmielewski, J. (2017). Electronic nose as a tool for monitoring the authenticity of food. A re-view. Food Analytical Methods, 10(6), 1800-1816.
  • Gordon, M. H. (2013). Principles and applications of gas chromatography in food analysis. Springer Science & Business Media.
  • Hoffmann, B., Münch, S., Schwägele, F., Neusüß, C., & Jira, W. (2017). A sensitive HPLC-MS/MS screening method for the simultaneous detection of lupine, pea, and soy proteins in meat products. Food Control, 71, 200-209.
  • Indrasti, D., Man, Y. B. C., Mustafa, S., & Hashim, D. M. (2010). Lard detection based on fatty acids profile using comprehensive gas chromatography hyphenated with time-of-flight mass spectrometry. Food chemistry, 122(4), 1273-1277.
  • Javidipour, I., Tekin, A., & Ergin, G. (1999). Determination of lard in adulterated beef tallow by gas chromatography. Gıda, 24, 171-175.
  • Leitner, A., Castro-Rubio, F., Marina, M. L., & Lindner, W. (2006). Identification of marker proteins for the adulteration of meat products with soybean proteins by multidimensional liquid Chromatography− Tandem mass spectrometry. Journal of proteome research, 5(9), 2424-2430.
  • Mahmoudi, E. (2009). Electronic nose technology and its applications. Sensors & Transducers, 107(8), 17.
  • Montowska, M., & Pospiech, E. (2010). Authenticity determination of meat and meat products on the protein and DNA basis. Food Reviews International, 27(1), 84-100.
  • Pranata, A. W., Yuliana, N. D., Amalia, L., & Darmawan, N. (2021). Volatilomics for halal and non-halal meatball authentication using solid-phase microextraction–gas chromatography–mass spectrometry. Arabian Journal of Che-mistry, 14(5), 103146.
  • Sahil, K., Prashant, B., Akanksha, M., Premjeet, S., & Devashish, R. (2011). Gas chromatography-mass spectrometry: applications. International journal of pharmaceutical & biological archives, 2(6), 1544-1560.
  • Santos, J., & Oliveira, M. B. P. (2017). Introduction to Chromatography–Techniques. Food Authentication: Management, Analysis and Regulation, 200.
  • Steffen, A., & Pawliszyn, J. (1996). Analysis of flavor volatiles using headspace solid-phase microextraction. Journal of Agricultural and Food Chemistry, 44(8), 2187-2193.
  • Takahashi, R., Nakaya, M., Kotaniguchi, M., Shojo, A., & Kitamura, S. (2018). Analysis of phosphatidylethanolamine, phosphatidylcholine, and plasmalogen molecular species in food lipids using an improved 2D high-performance liquid chromatography system. Journal of Chro-matography B, 1077, 35-43.
  • Thornton, H. (1949). Textbook of meat inspection. Textbook of meat inspection, 361 p., Angus & Robertson.
  • Turan, S. F. & Gürsoy, O. (2008). Karkas yapısı, kıl morfolojik özellikleri ve yağ asitleri kompozisyonlarına göre et hayvan türlerinin tanınması üzerine bir araştırma. Ç.Ü Fen Bilimleri Enstitüsü, 19(2): 97-108.
  • Trivedi, D. K., Hollywood, K. A., Rattray, N. J., Ward, H., Trivedi, D. K., Greenwood, J., ... & Goodacre, R. (2016). Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst, 141(7), 2155-2164.
  • Von Bargen, C., Dojahn, J., Waidelich, D., Humpf, H. U., & Brockmeyer, J. (2013). New sensitive high-performance liquid chromatography–tandem mass spectro-metry method for the detection of horse and pork in halal beef. Journal of agricultural and food chemistry, 61(49), 11986-11994.
  • Wang, G. J., Zhou, G. Y., Ren, H. W., Xu, Y., Yang, Y., Guo, L. H., & Liu, N. (2018). Peptide biomarkers identified by LC–MS in processed meats of five animal species. Journal of Food Composition and Analysis, 73, 47-54.
  • Wang, Q., Li, L., Ding, W., Zhang, D., Wang, J., Reed, K., & Zhang, B. (2019). Adulterant identification in mutton by electronic nose and gas chromatography mass spectrometer. Food Control, 98, 431-438.
  • Wilson, A. D., & Baietto, M. (2009). App-lications and advances in electronic nose technologies. Sensors, 9(7), 5099-5148.
  • Wissiack, R., De La Calle, B., Bordin, G., & Rodriguez, A. R. (2003). Screening test to detect meat adulteration through the determination of hemoglobin by cation exchange chromatography with diode array detection. Meat science, 64(4), 427-432.
  • Wong, D. W. (1989). Mechanism and theory in food chemistry (Vol. 115). New York: Van Nostrand Reinhold.
  • Zhang, Z., & Pawliszyn, J. (1993). Headspace solid-phase microextrac-tion. Analytical chemistry, 65(14), 1843-1852.
  • Zhang, Y., Liu, M., Wang, S., Kang, C., Zhang, M., & Li, Y. (2022). Identification and quantification of fox meat in meat products by liquid chromatography–tandem mass spectrometry. Food Chemistry, 372, 131336.
  • Zhang, T., Chen, C., Xie, K., Wang, J., & Pan, Z. (2021). Current State of Metabolomics Research in Meat Quality Analysis and Authentication. Foods, 10(10), 2388.
  • Zia, Q., Alawami, M., Mokhtar, N. F. K., Nhari, R. M. H. R., & Hanish, I. (2020). Current analytical methods for porcine identification in meat and meat products. Food chemistry, 324, 126664.

SOME CHROMATOGRAPHIC METHODS USED FOR SPECIES DETERMINATION IN MEAT AND MEAT PRODUCTS

Yıl 2022, Cilt: 4 Sayı: 1, 62 - 70, 23.06.2022
https://doi.org/10.51973/head.1118666

Öz

In this country, meat and meat products are usually considered a value added food product. Because of this, the processes of processing meat and converting it into a product are costly. Imitation and adulterations are committed by some enterprises in order to get more profit and reduce the cost of products by adding cheaper substitutes to high value food products. Due to the fact that pork or poultry meat is comparatively cheaper than the beef, it is often mixed in illegal production of the products made from red meat. Muslim and Jewish consumers have dietary restrictions against pork and its derivatives due to their religious beliefs. In addition, imitations and/or adulterations made in meat products may also negatively affect the health of the consumers with certain allergic diseases. However, it is reported that food adulteration in the meat industry has increased worldwide in recent years, and methods for identifying the species in meat products and the methods for detecting adulterations require high expertise and technical equipment. In this review, the chromatographic methods used to determine imitation, or the species identification in the meat and meat products are discussed.

Kaynakça

  • Aguilera, J. M. (2005). Why food microstructure? Journal of food engineering, 67(1-2), 3-11.
  • Ali, M. M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2020). Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science & Technology, 99, 1-10.
  • Al-Bukhaiti, W. Q., Noman, A., Qasim, A. S., & Al-Farga, A. (2017). Gas chromatography: Principles, advantages and applications in food analysis. International Journal of Agriculture Innovations and Research, 6(1), 123-128.
  • Alikord, M., Momtaz, H., Kadivar, M., & Rad, A. H. (2018). Species identification and animal authentication in meat products: a review. Journal of Food Measurement and Characterization, 12(1), 145-155.
  • Al-Rashood, K. A., Abdel-Moety, E. M., Rauf, A., Abou-Shaaban, R. R., & Al-Khamis, K. I. (1995). Triacylglycerols profiling by high performance liquid chromatography: A tool for detection of pork fat (lard) in processed foods. Journal of Liquid Chromatography & Related Technologies, 18(13), 2661-2673.
  • Anonim, (2021). “Bakan Pakdemirli: 91 firmaya ait 113 parti ürünü daha ifşa ediyoruz”, https://www.tarimorman.gov.tr/Haber/4729/Bakan-Pakdemirli-91-Firmaya-Ait-113-Parti-Urunu-Daha-Ifsa-Ediyoruz, Son Eri-şim Tarihi: 21.06.2022
  • Ardrey, R. E. (2003). Liquid chromatography-mass spectrometry: an introduction (Vol. 2). John Wiley & Sons.
  • Bai, Y., Liu, H., Zhang, B., Zhang, J., Wu, H., Zhao, S., ... & Zhao, Y. (2021). Research Progress on Traceability and Authen-ticity of Beef. Food Reviews International, 1-21. doi/10.1080/87559129.2021.1936000
  • Ballin, N. Z., Vogensen, F. K., & Karlsson, A. H. (2009). Species determination–Can we detect and quantify meat adultera-tion? Meat science, 83(2), 165-174.
  • Ballin, N. Z. (2010). Authentication of meat and meat products. Meat science, 86(3), 577-587.
  • Belitz, H. D., Grosch, W., & Schieberle, P. (2008). Food chemistry. Springer Science & Business Media.
  • Boselli, E., Pacetti, D., Curzi, F., & Frega, N. G. (2008). Determination of phospholipid molecular species in pork meat by high performance liquid chromatography tandem mass spectrometry and evaporative light scattering detection. Meat science, 78(3), 305-313.
  • Cavalli, J. F., Fernandez, X., Lizzani-Cuvelier, L., & Loiseau, A. M. (2003). Comparison of static headspace, headspace solid phase microextraction, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of French olive oils. Journal of agricul-tural and food chemistry, 51(26), 7709-7716.
  • Chou, C. C., Lin, S. P., Lee, K. M., Hsu, C. T., Vickroy, T. W., & Zen, J. M. (2007). Fast differentiation of meats from fifteen animal species by liquid chromatography with electrochemical detection using copper nanoparticle plated electrodes. Journal of Chromatography B, 846(1-2), 230-239.
  • Dettmer-Wilde, K., & Engewald, W. (2014). Practical gas chromatography. In A Comprehensive Reference (p. 902). Springer Berlin.
  • Fadzlillah, N. A., Man, Y. B. C., Jamaludin, M. A., Rahman, S. A., & Al-Kahtani, H. A. (2011). Halal food issues from Islamic and modern science perspectives. In 2nd international conference on humanities, historical and social sciences (Vol. 17, pp. 159-163). Singapore: IACSIT Press.
  • Fiehn, O. (2016). Metabolomics by gas chromatography mass spectrometry: combined targeted and untargeted profiling. Current protocols in molecular biology, 114(1), 30-4.
  • Figueiredo, I. L., Claus, T., Júnior, O. O. S., Almeida, V. C., Magon, T., & Visentainer, J. V. (2016). Fast derivatization of fatty acids in different meat samples for gas chromatography analysis. Journal of Chromatography A, 1456, 235-241.
  • Fornal, E., & Montowska, M. (2019). Species specific peptide-based liquid chromatography mass spectrometry monitoring of three poultry species in processed meat products. Food Chemistry, 283, 489-498. Giaretta, N., Di Giuseppe, A. M., Lippert, M., Parente, A., & Di Maro, A. (2013). Myoglobin as marker in meat adulteration: A UPLC method for determining the presence of pork meat in raw beef burger. Food chemistry, 141(3), 1814-1820.
  • Gliszczyńska-Świgło, A., & Chmielewski, J. (2017). Electronic nose as a tool for monitoring the authenticity of food. A re-view. Food Analytical Methods, 10(6), 1800-1816.
  • Gordon, M. H. (2013). Principles and applications of gas chromatography in food analysis. Springer Science & Business Media.
  • Hoffmann, B., Münch, S., Schwägele, F., Neusüß, C., & Jira, W. (2017). A sensitive HPLC-MS/MS screening method for the simultaneous detection of lupine, pea, and soy proteins in meat products. Food Control, 71, 200-209.
  • Indrasti, D., Man, Y. B. C., Mustafa, S., & Hashim, D. M. (2010). Lard detection based on fatty acids profile using comprehensive gas chromatography hyphenated with time-of-flight mass spectrometry. Food chemistry, 122(4), 1273-1277.
  • Javidipour, I., Tekin, A., & Ergin, G. (1999). Determination of lard in adulterated beef tallow by gas chromatography. Gıda, 24, 171-175.
  • Leitner, A., Castro-Rubio, F., Marina, M. L., & Lindner, W. (2006). Identification of marker proteins for the adulteration of meat products with soybean proteins by multidimensional liquid Chromatography− Tandem mass spectrometry. Journal of proteome research, 5(9), 2424-2430.
  • Mahmoudi, E. (2009). Electronic nose technology and its applications. Sensors & Transducers, 107(8), 17.
  • Montowska, M., & Pospiech, E. (2010). Authenticity determination of meat and meat products on the protein and DNA basis. Food Reviews International, 27(1), 84-100.
  • Pranata, A. W., Yuliana, N. D., Amalia, L., & Darmawan, N. (2021). Volatilomics for halal and non-halal meatball authentication using solid-phase microextraction–gas chromatography–mass spectrometry. Arabian Journal of Che-mistry, 14(5), 103146.
  • Sahil, K., Prashant, B., Akanksha, M., Premjeet, S., & Devashish, R. (2011). Gas chromatography-mass spectrometry: applications. International journal of pharmaceutical & biological archives, 2(6), 1544-1560.
  • Santos, J., & Oliveira, M. B. P. (2017). Introduction to Chromatography–Techniques. Food Authentication: Management, Analysis and Regulation, 200.
  • Steffen, A., & Pawliszyn, J. (1996). Analysis of flavor volatiles using headspace solid-phase microextraction. Journal of Agricultural and Food Chemistry, 44(8), 2187-2193.
  • Takahashi, R., Nakaya, M., Kotaniguchi, M., Shojo, A., & Kitamura, S. (2018). Analysis of phosphatidylethanolamine, phosphatidylcholine, and plasmalogen molecular species in food lipids using an improved 2D high-performance liquid chromatography system. Journal of Chro-matography B, 1077, 35-43.
  • Thornton, H. (1949). Textbook of meat inspection. Textbook of meat inspection, 361 p., Angus & Robertson.
  • Turan, S. F. & Gürsoy, O. (2008). Karkas yapısı, kıl morfolojik özellikleri ve yağ asitleri kompozisyonlarına göre et hayvan türlerinin tanınması üzerine bir araştırma. Ç.Ü Fen Bilimleri Enstitüsü, 19(2): 97-108.
  • Trivedi, D. K., Hollywood, K. A., Rattray, N. J., Ward, H., Trivedi, D. K., Greenwood, J., ... & Goodacre, R. (2016). Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst, 141(7), 2155-2164.
  • Von Bargen, C., Dojahn, J., Waidelich, D., Humpf, H. U., & Brockmeyer, J. (2013). New sensitive high-performance liquid chromatography–tandem mass spectro-metry method for the detection of horse and pork in halal beef. Journal of agricultural and food chemistry, 61(49), 11986-11994.
  • Wang, G. J., Zhou, G. Y., Ren, H. W., Xu, Y., Yang, Y., Guo, L. H., & Liu, N. (2018). Peptide biomarkers identified by LC–MS in processed meats of five animal species. Journal of Food Composition and Analysis, 73, 47-54.
  • Wang, Q., Li, L., Ding, W., Zhang, D., Wang, J., Reed, K., & Zhang, B. (2019). Adulterant identification in mutton by electronic nose and gas chromatography mass spectrometer. Food Control, 98, 431-438.
  • Wilson, A. D., & Baietto, M. (2009). App-lications and advances in electronic nose technologies. Sensors, 9(7), 5099-5148.
  • Wissiack, R., De La Calle, B., Bordin, G., & Rodriguez, A. R. (2003). Screening test to detect meat adulteration through the determination of hemoglobin by cation exchange chromatography with diode array detection. Meat science, 64(4), 427-432.
  • Wong, D. W. (1989). Mechanism and theory in food chemistry (Vol. 115). New York: Van Nostrand Reinhold.
  • Zhang, Z., & Pawliszyn, J. (1993). Headspace solid-phase microextrac-tion. Analytical chemistry, 65(14), 1843-1852.
  • Zhang, Y., Liu, M., Wang, S., Kang, C., Zhang, M., & Li, Y. (2022). Identification and quantification of fox meat in meat products by liquid chromatography–tandem mass spectrometry. Food Chemistry, 372, 131336.
  • Zhang, T., Chen, C., Xie, K., Wang, J., & Pan, Z. (2021). Current State of Metabolomics Research in Meat Quality Analysis and Authentication. Foods, 10(10), 2388.
  • Zia, Q., Alawami, M., Mokhtar, N. F. K., Nhari, R. M. H. R., & Hanish, I. (2020). Current analytical methods for porcine identification in meat and meat products. Food chemistry, 324, 126664.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleleri
Yazarlar

Derya Araç 0000-0002-9883-8340

Harun Dıraman 0000-0002-7431-7524

Senem Guner 0000-0002-6697-5535

Yayımlanma Tarihi 23 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 1

Kaynak Göster

APA Araç, D., Dıraman, H., & Guner, S. (2022). ET VE ET ÜRÜNLERİNDE TÜR TAYİNİNDE KULLANILAN BAZI KROMATOGRAFİK YÖNTEMLER. Helal Ve Etik Araştırmalar Dergisi, 4(1), 62-70. https://doi.org/10.51973/head.1118666

Dizinler ve Platformlar / Indexes and Platforms

22294    22295