Araştırma Makalesi
BibTex RIS Kaynak Göster

Stigmasterol, Sesamin ve Pinosilvin'in GSTP1 İnhibisyon Potansiyellerinin ve Farmakokinetik Özelliklerinin Değerlendirilmesi

Yıl 2025, Cilt: 7 Sayı: 2, 154 - 163, 23.06.2025
https://doi.org/10.52827/hititmedj.1599510

Öz

Amaç: Kanser tedavisinde ilaç direncini etkileyen önemli bir hedef olan Glutatyon S-transferaz P1 (GSTP1), detoksifikasyon ve reaktif oksijen türlerinin regülasyonundaki rolü nedeniyle kritik bir konudur. Bu çalışmada, doğal bileşiklerin (bakuchiol, sesamin, hidroksitirosol, stigmasterol ve pinosilvin) GSTP1’e karşı inhibitör potansiyelleri ve ADME (Absorpsiyon, metabolizma, dağılım, eliminasyon) profilleri değerlendirilmiştir.
Gereç ve Yöntem: Moleküler kenetleme simülasyonları ve absorpsiyon, metabolizma, dağılım, eliminasyon profillemesi kullanılarak, bu bileşiklerin inhibitör etkinlikleri referans inhibitör olan etakrinik asit ile karşılaştırılmıştır.
Bulgular: Kenetleme simülasyonları, stigmasterol (-9,2 kcal/mol) ve sesaminin (-8,2 kcal/mol) en güçlü bağlanma afinitelerini sergilediğini, ardından pinosilvin’in (-7,1 kcal/mol) inhibisyon potansiyelinde etakrinik asidi (-6,7 kcal/mol) geride bıraktığını gösterdi. Absorpsiyon, metabolizma, dağılım ve eliminasyon analizi, çözünürlük ve enzim etkileşimi riskleri belirtmiş olsa da sesamin ve pinosylvin için olumlu farmakokinetik özellikleri vurguladı.
Sonuç: Bu çalışma, Glutatyon S-transferaz P1 aracılı ilaç direncini hedef alarak, bitki kaynaklı bileşiklerin potansiyelini vurgulamaktadır. Bu tür yaklaşımlar, kanser tedavisinde yeni ve etkili stratejiler geliştirilmesine olanak sağlayabilir.

Kaynakça

  • Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000;61(3):154-166.
  • Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003;22(47):7369-7375.
  • Oakley AJ, Bello ML, Battistoni A et al. The structures of human glutathione transferase P1-1 in complex with glutathione, and various inhibitors at high resolution. Journal of molecular biology 1997;274(1):84-100.
  • Mehra A, Kaur G, Sethi S et al. Unveiling the potential of Bakuchiol-A comprehensive review on pharmacological activities and therapeutic formulations. Journal of Biologically Active Products from Nature 2024;14(2):134-160.
  • Nizam NN, Mahmud S, Ark SA, Kamruzzaman M, Hasan MK. Bakuchiol, a natural constituent, and its pharmacological benefits. F1000Research 2023;12.
  • Jeng K, Hou R. Sesamin and sesamolin: nature’s therapeutic lignans. Current Enzyme Inhibition 2005;1(1):11-20.
  • Majdalawieh AF, Yousef SM, Abu-Yousef IA, Nasrallah GK. Immunomodulatory and anti-inflammatory effects of sesamin: Mechanisms of action and future directions. Critical reviews in food science and nutrition 2022;62(18):5081-5112.
  • Rigacci S, Stefani M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. International journal of molecular sciences 2016;17(6):843.
  • Bakrim S, Benkhaira N, Bourais I et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022;11(10):1912.
  • Zhang X, Wang J, Zhu L et al. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Frontiers in oncology 2022;12:1101289.
  • Bakrim S, Machate H, Benali T et al. Natural sources and pharmacological properties of pinosylvin. Plants 2022;11(12):1541.
  • Goleij P, Sanaye PM, Babamohamadi M et al. Phytostilbenes in Lymphoma: Focuses on the Mechanistic and Clinical Prospects of Resveratrol, Pterostilbene, Piceatannol, and Pinosylvin. Leukemia Research 2024:107464.
  • Adelusi TI, Oyedele A-QK, Boyenle ID et al. Molecular modeling in drug discovery. Informatics in Medicine Unlocked 2022;29:100880.
  • Ferreira LL, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug discovery today 2019;24(5):1157-1165.
  • Ruzza P, Rosato A, Rossi CR, Floreani M, Quintieri L. Glutathione transferases as targets for cancer therapy. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2009;9(7):763-777.
  • Zhao G, Yu T, Wang R, Wang X, Jing Y. Synthesis and structure-activity relationship of ethacrynic acid analogues on glutathione-s-transferase P1-1 activity inhibition. Bioorganic & medicinal chemistry 2005;13(12):4056-4062.
  • Kim S, Chen J, Cheng T et al. PubChem 2023 update. Nucleic acids research 2023;51(D1):D1373-D1380.
  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics 2012;4:1-17.
  • Oakley AJ, Rossjohn J, Lo Bello M, Caccuri AM, Federici G, Parker MW. The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. Biochemistry 1997;36(3):576-585.
  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. Journal of chemical information and modeling 2021;61(8):3891-3898.
  • Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry 2010;31(2):455-461.
  • Biovia DS. Discovery studio modeling environment. Release San Diego; 2017.
  • Perperopoulou F, Pouliou F, Labrou NE. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Critical reviews in biotechnology 2018;38(4):511-528.
  • Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Research 2016;76(1):7-9.
  • Salaria D, Rolta R, Mehta J et al. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach. PLoS One 2022;17(3):e0265420.
  • Pireddu R, Sinico C, Ennas G et al. Nanocrystals as Tool to Enhance Stigmasterol Oral Bioavailability. Journal of Nanoscience and Nanotechnology 2021;21(5):2946-2948.
  • Wang C-Y, Yen C-C, Hsu M-C, Wu Y-T. Self-nanoemulsifying drug delivery systems for enhancing solubility, permeability, and bioavailability of sesamin. Molecules 2020;25(14):3119.
  • Kumar A, Mishra DC, Angadi UB, Yadav R, Rai A, Kumar D. Inhibition potencies of phytochemicals derived from sesame against SARS-CoV-2 main protease: A molecular docking and simulation study. Frontiers in chemistry 2021;9:744376.
  • Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. Journal of Controlled Release 2021;335:247-268.
  • Stoner CL, Cleton A, Johnson K et al. Integrated oral bioavailability projection using in vitro screening data as a selection tool in drug discovery. International journal of pharmaceutics 2004;269(1):241-250.
  • Dong S-C, Sha H-H, Xu X-Y et al. Glutathione S-transferase π: A potential role in antitumor therapy. Drug design, development and therapy 2018:3535-3547.

Evaluation of GSTP1 Inhibition Potentials and Pharmacokinetic Properties of Stigmasterol, Sesamin, and Pinosylvin

Yıl 2025, Cilt: 7 Sayı: 2, 154 - 163, 23.06.2025
https://doi.org/10.52827/hititmedj.1599510

Öz

Objective: Glutathione S-transferase P1 (GSTP1), an important target affecting drug resistance in cancer treatment, is a critical issue due to its role in detoxifying and regulating reactive oxygen species. This study evaluated the inhibitory potentials of natural compounds (bakuchiol, sesamin, hydroxytyrosol, stigmasterol, and pinosylvin) against Glutathione S-transferase P1 and their absorption, metabolism, distribution, and elimination (ADME) profiles.
Material and Method: The inhibitory activities of these compounds were compared with those of the reference inhibitor, etacrynic acid, using molecular docking simulations and absorption, metabolism, distribution, and elimination profiling.
Results: Docking simulations showed that stigmasterol (-9.2 kcal/mol) and sesamin (-8.2 kcal/mol) exhibited the most potent binding affinities, followed by pinosylvin (-7.1 kcal/mol), surpassing etacrynic acid (-6.7 kcal/mol) in inhibition potential. Although the absorption, metabolism, distribution, and elimination analysis indicated risks related to solubility and enzyme interactions, it highlighted favorable pharmacokinetic properties for sesamin and pinosylvin.
Conclusion: This study emphasizes the potential of plant-derived compounds by targeting Glutathione S-transferase P1-mediated drug resistance. Such approaches may enable the development of new and effective strategies in cancer treatment.

Etik Beyan

ETİK BEYAN Bu çalışmanın yazarları olarak; - Araştırma ve yayın etiği ilkelerine uyulduğunu, - Tüm verilerin gerçek ve özgün olduğunu, - Dijital ve basılı tüm kaynaklara bilimsel kurallara uygun atıf yapıldığını, - Herhangi bir çıkar çatışmasının olmadığını, - Finansal destek alınmadığını beyan ederiz.

Kaynakça

  • Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000;61(3):154-166.
  • Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003;22(47):7369-7375.
  • Oakley AJ, Bello ML, Battistoni A et al. The structures of human glutathione transferase P1-1 in complex with glutathione, and various inhibitors at high resolution. Journal of molecular biology 1997;274(1):84-100.
  • Mehra A, Kaur G, Sethi S et al. Unveiling the potential of Bakuchiol-A comprehensive review on pharmacological activities and therapeutic formulations. Journal of Biologically Active Products from Nature 2024;14(2):134-160.
  • Nizam NN, Mahmud S, Ark SA, Kamruzzaman M, Hasan MK. Bakuchiol, a natural constituent, and its pharmacological benefits. F1000Research 2023;12.
  • Jeng K, Hou R. Sesamin and sesamolin: nature’s therapeutic lignans. Current Enzyme Inhibition 2005;1(1):11-20.
  • Majdalawieh AF, Yousef SM, Abu-Yousef IA, Nasrallah GK. Immunomodulatory and anti-inflammatory effects of sesamin: Mechanisms of action and future directions. Critical reviews in food science and nutrition 2022;62(18):5081-5112.
  • Rigacci S, Stefani M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. International journal of molecular sciences 2016;17(6):843.
  • Bakrim S, Benkhaira N, Bourais I et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022;11(10):1912.
  • Zhang X, Wang J, Zhu L et al. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Frontiers in oncology 2022;12:1101289.
  • Bakrim S, Machate H, Benali T et al. Natural sources and pharmacological properties of pinosylvin. Plants 2022;11(12):1541.
  • Goleij P, Sanaye PM, Babamohamadi M et al. Phytostilbenes in Lymphoma: Focuses on the Mechanistic and Clinical Prospects of Resveratrol, Pterostilbene, Piceatannol, and Pinosylvin. Leukemia Research 2024:107464.
  • Adelusi TI, Oyedele A-QK, Boyenle ID et al. Molecular modeling in drug discovery. Informatics in Medicine Unlocked 2022;29:100880.
  • Ferreira LL, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug discovery today 2019;24(5):1157-1165.
  • Ruzza P, Rosato A, Rossi CR, Floreani M, Quintieri L. Glutathione transferases as targets for cancer therapy. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2009;9(7):763-777.
  • Zhao G, Yu T, Wang R, Wang X, Jing Y. Synthesis and structure-activity relationship of ethacrynic acid analogues on glutathione-s-transferase P1-1 activity inhibition. Bioorganic & medicinal chemistry 2005;13(12):4056-4062.
  • Kim S, Chen J, Cheng T et al. PubChem 2023 update. Nucleic acids research 2023;51(D1):D1373-D1380.
  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics 2012;4:1-17.
  • Oakley AJ, Rossjohn J, Lo Bello M, Caccuri AM, Federici G, Parker MW. The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. Biochemistry 1997;36(3):576-585.
  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. Journal of chemical information and modeling 2021;61(8):3891-3898.
  • Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry 2010;31(2):455-461.
  • Biovia DS. Discovery studio modeling environment. Release San Diego; 2017.
  • Perperopoulou F, Pouliou F, Labrou NE. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Critical reviews in biotechnology 2018;38(4):511-528.
  • Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Research 2016;76(1):7-9.
  • Salaria D, Rolta R, Mehta J et al. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach. PLoS One 2022;17(3):e0265420.
  • Pireddu R, Sinico C, Ennas G et al. Nanocrystals as Tool to Enhance Stigmasterol Oral Bioavailability. Journal of Nanoscience and Nanotechnology 2021;21(5):2946-2948.
  • Wang C-Y, Yen C-C, Hsu M-C, Wu Y-T. Self-nanoemulsifying drug delivery systems for enhancing solubility, permeability, and bioavailability of sesamin. Molecules 2020;25(14):3119.
  • Kumar A, Mishra DC, Angadi UB, Yadav R, Rai A, Kumar D. Inhibition potencies of phytochemicals derived from sesame against SARS-CoV-2 main protease: A molecular docking and simulation study. Frontiers in chemistry 2021;9:744376.
  • Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. Journal of Controlled Release 2021;335:247-268.
  • Stoner CL, Cleton A, Johnson K et al. Integrated oral bioavailability projection using in vitro screening data as a selection tool in drug discovery. International journal of pharmaceutics 2004;269(1):241-250.
  • Dong S-C, Sha H-H, Xu X-Y et al. Glutathione S-transferase π: A potential role in antitumor therapy. Drug design, development and therapy 2018:3535-3547.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Farmakoloji
Bölüm Araştırma Makaleleri
Yazarlar

Nihan Küçük 0000-0002-9205-1467

Mehmet Özcan 0000-0002-1222-2802

Yayımlanma Tarihi 23 Haziran 2025
Gönderilme Tarihi 10 Aralık 2024
Kabul Tarihi 11 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

AMA Küçük N, Özcan M. Evaluation of GSTP1 Inhibition Potentials and Pharmacokinetic Properties of Stigmasterol, Sesamin, and Pinosylvin. Hitit Medical Journal. Haziran 2025;7(2):154-163. doi:10.52827/hititmedj.1599510