Investigation of Molecular Compounds in Kumquat (Fortunella Spp.) Peel via Raman Spectroscopy
Year 2026,
Volume: 54 Issue: 1, 1 - 7, 31.12.2025
Hümeyra Yıldırım
,
Işıl Tulum
,
Ayşe Erol
,
Fahrettin Sarcan
Abstract
In this study, Raman spectroscopy is employed to investigate the chemical compounds of kumquat peels and compared that of orange. Kumquat is a citrus fruit belonging to the genus Fortunella in family Rutaceae. It is observed that kumquat peel has 3 main Raman active characteristic vibration modes specified to carotenoids, which is dominated by β-carotene at 1007, 1158 and 1526 cm-1, as it is well known for orange. The carotenoid distribution within the cross-section of kumquat is also investigated. The carotenoid-related Raman vibration modes are relatively stronger on the peel of kumquat, which is an important finding especially for the fruits that can be eaten with its peel. Our results pave the way to take an attention for the importance of kumquat as being a fruit that can be grown up in different climates compared to orange, which grow in warm climates.
Supporting Institution
This work was supported in part by the Scientific Research Projects Coordination Unit of Istanbul University (FBG-2022-38573, FBG-2021-37896).
References
-
S.N. Lou, C.T. Ho, Phenolic compounds and biological activities of small-size citrus: kumquat and calamondin, J. Food Drug Anal., 25 (2017) 162-175.
-
M.H. Chen, K.M. Yang, T.C. Huang, M.L. Wu, Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity, Medicines (Basel), 4 (2017) 28.
-
T.M. Radovich, S.S. Nakamoto, Twelve Fruits with Potential Value-Added and Culinary Uses, University of Hawai‘i, College of Tropical Agriculture and Human Resources, Honolulu-Hawaii, USA, 2007.
-
A. Palma, S. D’Aquino, Kumquat— fortunella japonica. Exotic Fruits, 2018, 271-278.
-
Y. Wang, W. Zeng, P. Xu, Y. Lan, R. Zhu, K. Zhong, Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel, Int. J. Mol. Sci., 13 (2012) 3382-3393.
-
D. Turgut, M. Gölükçü, H. Tokgöz,, Kamkat (fortunella margarita swing.) meyvesi ve reçelinin bazı fiziksel ve kimyasal özellikleri, Derim, 32 (2015) 71-82.
-
Choi HS. Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil. J Agric Food Chem., 53 (2005) 1642-1647.
-
A. Pawełczyk, J. Żwawiak, L. Zaprutko, Kumquat fruits as an important source of food ingredients and utility compounds, Food Rev. Int., 39 (2021) 875-895.
-
K. Ogawa, A. Kawasaki, M. Omura, T. Yoshida, Y. Ikoma, M. Yano, 3',5'-Di-C-beta-glucopyranosylphloretin, a flavonoid characteristic of the genus Fortunella. Phytochemistry, 57 (2001) 737-742.
-
S.N. Lou, Y.C. Lai, Y.S. Hsu, C.T. Ho, Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food Chem., 196 (2015) 1-9.
-
X. Li, M. Meenu, B. Xu, Recent development in bioactive compounds and health benefits of kumquat fruits. Food Rev Int., 39 (2022) 4312-4332.
-
X. Lv, S. Zhao, Z. Ning, H. Zeng, Y. Shu, Y. Tao, C. Xiao, C. Lu, Y. Liu, Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health, Chem. Cent. J., 9 (2015) 68.
-
A. Abdella, M. Al-Saman, S. Irmak, Antimicrobial and antioxidant activities of different extracts of kumquat (Citrus japonica var. margarita) fruit. J. Food Meas. Charact., 13 (2019) 1-8.
-
T. Grune, G. Lietz, A. Palou, A.C. Ross, W. Stahl, G. Tang, D. Thurnham, S.A. Yin, H.K. Biesalski, Beta-carotene is an important vitamin A source for humans, J. Nutr., 140 (2010) 2268-2285.
-
R.K. Saini, P. Prasad, V. Lokesh, X. Shang, J. Shin, Y.S. Keum, J.H. Lee, Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits—a review of recent advancements, Antioxidants, 11 (2022) 795.
-
X. Yu, X. Chen, Y. Li, L. Li, Effect of drying methods on volatile compounds of Citrus reticulata Ponkan and Chachi peels as characterized by GC-MS and GC-IMS. Foods, 11 (2022) 2662.
-
J. Chen, Y. Shi, Y. Zhong, Z. Sun, J. Niu, Y. Wang, T. Chen, J. Chen, M. Luan, Transcriptome Analysis and HPLC Profiling of Flavonoid Biosynthesis in Citrus aurantium L. during Its Key Developmental Stages, Biology, 11 (2022) 1078.
-
M. Niluxsshun, K. Masilamani, U. Mathiventhan, Green synthesis of silver nanoparticles from the extracts of fruit peel of citrus tangerina, citrus sinensis, and citrus limon for antibacterial activities, Bioinorg. Chem. Appl., (2021) 1-8.
-
Y. Yang, X. Wang, C. Zhao, G. Tian, H. Zhang, H. Xiao, L. He, J. Zheng, Chemical Mapping of Essential Oils, Flavonoids and Carotenoids in Citrus Peels by Raman Microscopy, J. Food Sci., 82 (2017) 2840-2846.
-
F. Sarcan, O. Dönmez, K. Kara, A. Erol, E. Akalın, M. Cetin Arıkan, H. Makhloufi, A. Arnoult, C. Fontaine, Bismuth-induced effects on optical, lattice vibrational, and structural properties of bulk GaAsBi alloys, Nanoscale Res. Lett., 9 (2014) 119.
-
F. Sarcan, N.J. Fairbairn, P. Zotev, T. Severs-Millard, D.J. Gillard, X. Wang, B. Conran, M. Heuken, A. Erol, A.I. Tartakovskii, T.F. Krauss, G.J. Hedley, Y. Wang, Understanding the impact of heavy ions and tailoring the optical properties of large-area monolayer WS2 using focused ion beam, NPJ 2D Mater. Appl., 7 (2023) 1-10.
-
K.V. Serebrennikova, A.N. Berlina, D.V. Sotnikov, A.V. Zherdev, B.B. Dzantiev, Raman scattering-based biosensing: new prospects and opportunities, Biosensors, 11 (2021) 512.
-
K. Dodo, K. Fujita, M. Sodeoka, Raman spectroscopy for chemical biology research. J. Am. Chem. Soc., 144 (2022) 19651-19667.
-
J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo, Flexible and Adhesive Surface-Enhanced Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables, Anal. Chem., 88 (2016) 2149-2155.
-
A. Zhu, S. Ali, T. Jiao, Z. Wang, Q. Ouyang, Q. Chen, Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens, Compr. Rev. Food Sci. Food Saf., 22 (2023) 1466-1494.
-
S. Almaviva, F. Artuso, I. Giardina, A. Lai, A. Pasquo, Fast Detection of Different Water Contaminants by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy, Sensors, 22 (2022) 8338.
-
G. Devitt, K. Howard, A. Mudher, S. Mahajan, Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis, ACS Chem. Neurosci., 9 (2018) 404-420.
-
A. Mortensen, L. Skibsted, Importance of carotenoid structure in radical-scavenging reactions, J. Agric. Food Chem., 45 (1997) 2970-2977.
-
E. Kuş, G. Altındemir, Y.K. Bostan, C. Taşaltın, A. Erol, Y. Wang, F. Sarcan, A Dual-Channel MoS2-Based Selective Gas Sensor for Volatile Organic Compounds, Nanomaterials, 14 (2024) 633.
-
F. Sarcan, A.J. Armstrong, Y.K. Bostan, E. Kus, K.P. McKenna, A. Erol, Y. Wang, Ultraviolet-Ozone Treatment: An Effective Method for Fine-Tuning Optical and Electrical Properties of Suspended and Substrate-Supported MoS2, Nanomaterials, 13 (2023) 3034.
-
H. Schulz, M. Baranska, R. Baranski, Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers, 77 (2005) 212-221.
-
M. Baranska, W. Schütze, H. Schulz, Determination of lycopene and beta-carotene content in tomato fruits and related products: comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal Chem., 78 (2006) 8456-8461.
-
J. Gelder, K. Gussem, P. Vandenabeele, L. Moëns, Reference database of Raman spectra of biological molecules, J. Raman Spectrosc., 38 (2007) 1133-1147.
-
M. Park, A. Somborn, D. Schlehuber, V. Keuter, G. Deerberg, Raman spectroscopy in crop quality assessment: focusing on sensing secondary metabolites: a review, Hortic. Res., 10 (2023).
-
H. Schulz, B. Schrader, R. Quilitzsch, B. Steuer, Quantitative analysis of various citrus oils by ATR/FT-IR and NIR-FT Raman spectroscopy. Appl Spectrosc., 56 (2002) 117-124.
-
P. Jentzsch, V. Ciobotă, Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils, Flavour Fragr. J., 29 (2014) 287-295.
Kamkat (Fortunella Spp.) Kabuğundaki Moleküler Bileşiklerin Raman Spektroskopisi ile İncelenmesi
Year 2026,
Volume: 54 Issue: 1, 1 - 7, 31.12.2025
Hümeyra Yıldırım
,
Işıl Tulum
,
Ayşe Erol
,
Fahrettin Sarcan
Abstract
Bu çalışmada, Raman spektroskopisi kullanılarak kamkat kabuklarının kimyasal bileşenleri araştırılmış ve portakal kabukları ile karşılaştırılmıştır. Kamkat, Rutaceae familyasından Fortunella cinsine ait bir turunçgil meyvesidir. Kamkat kabuğunun, portakal için iyi bilindiği gibi 1007, 1158 ve 1526 cm-1'de β-karoten tarafından domine edilen karotenoidlere özgü 3 ana Raman aktif karakteristik titreşim moduna sahip olduğu gözlemlenmiştir. Kamkatın enine kesiti içindeki karotenoid dağılımı da araştırılmıştır. Karotenoidle ilişkili Raman titreşim modları kamkatın kabuğunda nispeten daha güçlüdür, bu da özellikle kabuğuyla yenebilen meyveler için önemli bir bulgudur. Sonuçlarımız, sıcak iklimlerde yetişen portakala kıyasla kamkatın farklı iklimlerde yetişebilen bir meyve olmasının önemine dikkat çekmektedir.
Supporting Institution
Bu çalışma, İstanbul Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından kısmen desteklenmiştir (FBG-2022-38573, FBG-2021-37896).
References
-
S.N. Lou, C.T. Ho, Phenolic compounds and biological activities of small-size citrus: kumquat and calamondin, J. Food Drug Anal., 25 (2017) 162-175.
-
M.H. Chen, K.M. Yang, T.C. Huang, M.L. Wu, Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity, Medicines (Basel), 4 (2017) 28.
-
T.M. Radovich, S.S. Nakamoto, Twelve Fruits with Potential Value-Added and Culinary Uses, University of Hawai‘i, College of Tropical Agriculture and Human Resources, Honolulu-Hawaii, USA, 2007.
-
A. Palma, S. D’Aquino, Kumquat— fortunella japonica. Exotic Fruits, 2018, 271-278.
-
Y. Wang, W. Zeng, P. Xu, Y. Lan, R. Zhu, K. Zhong, Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel, Int. J. Mol. Sci., 13 (2012) 3382-3393.
-
D. Turgut, M. Gölükçü, H. Tokgöz,, Kamkat (fortunella margarita swing.) meyvesi ve reçelinin bazı fiziksel ve kimyasal özellikleri, Derim, 32 (2015) 71-82.
-
Choi HS. Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil. J Agric Food Chem., 53 (2005) 1642-1647.
-
A. Pawełczyk, J. Żwawiak, L. Zaprutko, Kumquat fruits as an important source of food ingredients and utility compounds, Food Rev. Int., 39 (2021) 875-895.
-
K. Ogawa, A. Kawasaki, M. Omura, T. Yoshida, Y. Ikoma, M. Yano, 3',5'-Di-C-beta-glucopyranosylphloretin, a flavonoid characteristic of the genus Fortunella. Phytochemistry, 57 (2001) 737-742.
-
S.N. Lou, Y.C. Lai, Y.S. Hsu, C.T. Ho, Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food Chem., 196 (2015) 1-9.
-
X. Li, M. Meenu, B. Xu, Recent development in bioactive compounds and health benefits of kumquat fruits. Food Rev Int., 39 (2022) 4312-4332.
-
X. Lv, S. Zhao, Z. Ning, H. Zeng, Y. Shu, Y. Tao, C. Xiao, C. Lu, Y. Liu, Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health, Chem. Cent. J., 9 (2015) 68.
-
A. Abdella, M. Al-Saman, S. Irmak, Antimicrobial and antioxidant activities of different extracts of kumquat (Citrus japonica var. margarita) fruit. J. Food Meas. Charact., 13 (2019) 1-8.
-
T. Grune, G. Lietz, A. Palou, A.C. Ross, W. Stahl, G. Tang, D. Thurnham, S.A. Yin, H.K. Biesalski, Beta-carotene is an important vitamin A source for humans, J. Nutr., 140 (2010) 2268-2285.
-
R.K. Saini, P. Prasad, V. Lokesh, X. Shang, J. Shin, Y.S. Keum, J.H. Lee, Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits—a review of recent advancements, Antioxidants, 11 (2022) 795.
-
X. Yu, X. Chen, Y. Li, L. Li, Effect of drying methods on volatile compounds of Citrus reticulata Ponkan and Chachi peels as characterized by GC-MS and GC-IMS. Foods, 11 (2022) 2662.
-
J. Chen, Y. Shi, Y. Zhong, Z. Sun, J. Niu, Y. Wang, T. Chen, J. Chen, M. Luan, Transcriptome Analysis and HPLC Profiling of Flavonoid Biosynthesis in Citrus aurantium L. during Its Key Developmental Stages, Biology, 11 (2022) 1078.
-
M. Niluxsshun, K. Masilamani, U. Mathiventhan, Green synthesis of silver nanoparticles from the extracts of fruit peel of citrus tangerina, citrus sinensis, and citrus limon for antibacterial activities, Bioinorg. Chem. Appl., (2021) 1-8.
-
Y. Yang, X. Wang, C. Zhao, G. Tian, H. Zhang, H. Xiao, L. He, J. Zheng, Chemical Mapping of Essential Oils, Flavonoids and Carotenoids in Citrus Peels by Raman Microscopy, J. Food Sci., 82 (2017) 2840-2846.
-
F. Sarcan, O. Dönmez, K. Kara, A. Erol, E. Akalın, M. Cetin Arıkan, H. Makhloufi, A. Arnoult, C. Fontaine, Bismuth-induced effects on optical, lattice vibrational, and structural properties of bulk GaAsBi alloys, Nanoscale Res. Lett., 9 (2014) 119.
-
F. Sarcan, N.J. Fairbairn, P. Zotev, T. Severs-Millard, D.J. Gillard, X. Wang, B. Conran, M. Heuken, A. Erol, A.I. Tartakovskii, T.F. Krauss, G.J. Hedley, Y. Wang, Understanding the impact of heavy ions and tailoring the optical properties of large-area monolayer WS2 using focused ion beam, NPJ 2D Mater. Appl., 7 (2023) 1-10.
-
K.V. Serebrennikova, A.N. Berlina, D.V. Sotnikov, A.V. Zherdev, B.B. Dzantiev, Raman scattering-based biosensing: new prospects and opportunities, Biosensors, 11 (2021) 512.
-
K. Dodo, K. Fujita, M. Sodeoka, Raman spectroscopy for chemical biology research. J. Am. Chem. Soc., 144 (2022) 19651-19667.
-
J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo, Flexible and Adhesive Surface-Enhanced Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables, Anal. Chem., 88 (2016) 2149-2155.
-
A. Zhu, S. Ali, T. Jiao, Z. Wang, Q. Ouyang, Q. Chen, Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens, Compr. Rev. Food Sci. Food Saf., 22 (2023) 1466-1494.
-
S. Almaviva, F. Artuso, I. Giardina, A. Lai, A. Pasquo, Fast Detection of Different Water Contaminants by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy, Sensors, 22 (2022) 8338.
-
G. Devitt, K. Howard, A. Mudher, S. Mahajan, Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis, ACS Chem. Neurosci., 9 (2018) 404-420.
-
A. Mortensen, L. Skibsted, Importance of carotenoid structure in radical-scavenging reactions, J. Agric. Food Chem., 45 (1997) 2970-2977.
-
E. Kuş, G. Altındemir, Y.K. Bostan, C. Taşaltın, A. Erol, Y. Wang, F. Sarcan, A Dual-Channel MoS2-Based Selective Gas Sensor for Volatile Organic Compounds, Nanomaterials, 14 (2024) 633.
-
F. Sarcan, A.J. Armstrong, Y.K. Bostan, E. Kus, K.P. McKenna, A. Erol, Y. Wang, Ultraviolet-Ozone Treatment: An Effective Method for Fine-Tuning Optical and Electrical Properties of Suspended and Substrate-Supported MoS2, Nanomaterials, 13 (2023) 3034.
-
H. Schulz, M. Baranska, R. Baranski, Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers, 77 (2005) 212-221.
-
M. Baranska, W. Schütze, H. Schulz, Determination of lycopene and beta-carotene content in tomato fruits and related products: comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal Chem., 78 (2006) 8456-8461.
-
J. Gelder, K. Gussem, P. Vandenabeele, L. Moëns, Reference database of Raman spectra of biological molecules, J. Raman Spectrosc., 38 (2007) 1133-1147.
-
M. Park, A. Somborn, D. Schlehuber, V. Keuter, G. Deerberg, Raman spectroscopy in crop quality assessment: focusing on sensing secondary metabolites: a review, Hortic. Res., 10 (2023).
-
H. Schulz, B. Schrader, R. Quilitzsch, B. Steuer, Quantitative analysis of various citrus oils by ATR/FT-IR and NIR-FT Raman spectroscopy. Appl Spectrosc., 56 (2002) 117-124.
-
P. Jentzsch, V. Ciobotă, Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils, Flavour Fragr. J., 29 (2014) 287-295.