Araştırma Makalesi
BibTex RIS Kaynak Göster

Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies

Yıl 2019, , 445 - 454, 01.12.2019
https://doi.org/10.15671/hjbc.676957

Öz

Bu çalışma, çift sarmal DNA (dsDNA) ile önemli ve sık kullanılan bir antikanser ilacı olan Mitomisin C (MMC) arasındaki biyomoleküler etkileşimin görüntülenmesi için elektroaktif polimer modifiye elektrot malzemelerinin hazırlanmasını göstermektedir. Modifiye elektrot malzemeleri, o-fenilendiamin (oPD) monomerinin nanomalzeme içeren bir çözeltide elektropolimerizasyonu ile oluşturulmuştur. Katkı maddesi (dopant) molekül olarak kullanılan nanomalzeme grafen (GN)’dir ve elektropolimerizasyon tekniği dönüşümlü voltametri (CV)’dir. Sonrasında poli(o-fenilendiamin) polimer modifiye yüzeylere dsDNA immobilizasyonu gerçekleştirilmiştir. Oluşturulan nanomalzeme katılmış bu polimer modifiye elektrotlar, dsDNA-MMC etkileşiminin tespitinde biyotayin platformları olarak kullanılmışlardır. Biyomoleküler etkileşimlerini aydınlatmak için farklı MMC etkileşim süreleri çalışılmıştır.

Destekleyen Kurum

Türkiye Bilimler Akademisi

Teşekkür

F. Kuralay acknowledges Turkish Academy of Sciences (TÜBA) as an associate member and TÜBA-GEBİP program for financial support. F. Kuralay also acknowledges Yaşar Bayramlı for his technical support.

Kaynakça

  • 1. J. Wang, Nanoparticle-based electrochemical DNA detection, Anal. Chim. Acta, 500 (2003) 247-257.
  • 2. E.M. Boon, J.K. Barton, DNA electrochemistry as a probe of base pair stacking in A-, B-, and Z-form DNA, Bioconjugate Chem., 14 (2003) 1140-1147.
  • 3. J. Wang, G. Liu, A. Merkoçi, Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc., 125 (2003) 3214-3215.
  • 4. Q. Gong, Y. Wang, H. Yang, A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film, Biosens. Bioelectron., 89 (2017) 565-569.
  • 5. F. Kuralay, N. Dükar, Y. Bayramlı, Poly-L-lysine coated surfaces for ultrasensitive nucleic acid detection, Electroanal., 30 (2018) 1556-1565.
  • 6. A. Erdem, Nanomaterial-based electrochemical DNA sensing strategies, Talanta, 74 (2007) 318-325.
  • 7. S. Gürsoy, N. Dükar, Y.T. Yaman, S. Abaci, F. Kuralay, Electroactive polyglycine coatings for nanobiosensing applications: Label-free DNA hybridization, DNA-antitumor agent interaction and antitumor agent determination, Anal. Chim. Acta, 1072 (2019) 15-24.
  • 8. A. Erdem, H. Karadeniz, A. Caliskan, Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions, Electroanal., 21 (2009) 464-471.
  • 9. E.E.S. Bruzaca, I.C. Lopes, E.H.C. Silva, P.A.V. Carvalho, A.A. Tanaka, Electrochemical oxidation of the antitumor antibiotic mitomycin C and in situ evaluation of its interaction with DNA using a DNA-electrochemical sensor, Microchem. J., 133 (2017) 81-89.
  • 10. G.G. Wallace, M. Smyth, H. Zhao, Conducting electroactive polymer-based biosensors, TrAC Trends in Anal. Chem., 18 (1999) 245-251.
  • 11. O.E. Fayemi, A.S. Adekunle, B.E. Swamy, E.E. Ebenso, Electrochemical sensor for the detection of dopamine in real samples using polyaniline/NiO, ZnO, and Fe3O4 nanocomposites on glassy carbon electrode, J. Electroanal. Chem. 818 (2018) 236-249.
  • 12. F. Kuralay, H. Özyörük, A. Yıldız, Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinyferrocenium) film, Sens. Actuat. B: Chem., 109 (2005) 194-199.
  • 13. S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review, Biosens. Bioelectron., 14 (1999) 443-456.
  • 14. X. Liu, L. Zhang, S. Wei, S. Chen, X. Ou, Q. Lu, Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine, Biosens. Bioelectron., 57 (2014) 232-238.
  • 15. M.D. Zavolskova, V.N. Nikitina, E.D. Maksimova, E.E. Karyakiba, Constant potential amperometric flow-injection analysis of ions and neutral molecules transduced by electroactive (conductive) polymers, Anal. Chem., 91 (2019) 7495-7499.
  • 16. D.A.C. Brownson, C.E. Banks, Graphene electrochemistry: an overview of potential applications, Analyst, 135 (2010) 2768-2778.
  • 17. M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev., 39 (2010) 4146-4157.
  • 18. A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications, Chem. European J., 22 (2016) 153-159.
  • 19. A. Halder, M. Zhang, Q. Chi, Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms, Biosens. Bioelectron., 87 (2017) 764-771.
  • 20. O. Tovide, N. Jahed, C.E. Sunday, K. Kokpas, R.F. Ajayi, H.R. Makelane, K.M. Molapoi S.V. John, P.G. Baker, E.I. Iwuoha, Electro-oxidation of anthracene on polyanilino-graphene composite electrode, Sens. Actuat. B: Chem., 205 (2014) 184-192.
  • 21. N. Dükar, S. Tunç, K. Öztürk, S. Demirci, M. Dumangöz, M. Sönmez çelebi, F. Kuralay, Highly sensitive and selective dopamine sensing in biological fluids with one-pot prepared graphene/poly(o-phenylenediamine) modified electrodes, Mater. Chem. Phys., 228 (2019) 357-362.
  • 22. X. Feng, H. Cheng, Y. Pan, H. Zheng, Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite, Biosens. Bioelectron., 70 (2015) 411-417.
  • 23. E. Muthusankar, V.K. Ponnusamy, D. Ragupathy, Electrochemically sandwiched poly(diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor, Synt. Metals, 254 (2019) 134-140.
  • 24. X. Liu, H. Zhu, X. Yang, An electrochemical sensor for dopamine based on poly(o-phenylenediamine) functionalized with electrochemically reduced graphene oxide, RSC Adv. 4 (2014) 3706-3712.
  • 25. X. Wang, D. Sun, Y. Tong, Y. Zhong, Z. Chen, A voltammetric aptamer-based thrombin biosensor exploiting signal amplification via synergetic catalysis by DNAzyme and enzyme decorated AuPd nanoparticles on a poly(o-phenylenediamine) support, Microchim. Acta, 184 (2017) 1791-1799.
  • 26. F. Kuralay, A. Erdem, Gold nanoparticle/polymer nanocomposite for highly sensitive drug-DNA interaction, Analyst, 140 (2015) 2876-2880.
Yıl 2019, , 445 - 454, 01.12.2019
https://doi.org/10.15671/hjbc.676957

Öz

Kaynakça

  • 1. J. Wang, Nanoparticle-based electrochemical DNA detection, Anal. Chim. Acta, 500 (2003) 247-257.
  • 2. E.M. Boon, J.K. Barton, DNA electrochemistry as a probe of base pair stacking in A-, B-, and Z-form DNA, Bioconjugate Chem., 14 (2003) 1140-1147.
  • 3. J. Wang, G. Liu, A. Merkoçi, Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc., 125 (2003) 3214-3215.
  • 4. Q. Gong, Y. Wang, H. Yang, A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film, Biosens. Bioelectron., 89 (2017) 565-569.
  • 5. F. Kuralay, N. Dükar, Y. Bayramlı, Poly-L-lysine coated surfaces for ultrasensitive nucleic acid detection, Electroanal., 30 (2018) 1556-1565.
  • 6. A. Erdem, Nanomaterial-based electrochemical DNA sensing strategies, Talanta, 74 (2007) 318-325.
  • 7. S. Gürsoy, N. Dükar, Y.T. Yaman, S. Abaci, F. Kuralay, Electroactive polyglycine coatings for nanobiosensing applications: Label-free DNA hybridization, DNA-antitumor agent interaction and antitumor agent determination, Anal. Chim. Acta, 1072 (2019) 15-24.
  • 8. A. Erdem, H. Karadeniz, A. Caliskan, Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions, Electroanal., 21 (2009) 464-471.
  • 9. E.E.S. Bruzaca, I.C. Lopes, E.H.C. Silva, P.A.V. Carvalho, A.A. Tanaka, Electrochemical oxidation of the antitumor antibiotic mitomycin C and in situ evaluation of its interaction with DNA using a DNA-electrochemical sensor, Microchem. J., 133 (2017) 81-89.
  • 10. G.G. Wallace, M. Smyth, H. Zhao, Conducting electroactive polymer-based biosensors, TrAC Trends in Anal. Chem., 18 (1999) 245-251.
  • 11. O.E. Fayemi, A.S. Adekunle, B.E. Swamy, E.E. Ebenso, Electrochemical sensor for the detection of dopamine in real samples using polyaniline/NiO, ZnO, and Fe3O4 nanocomposites on glassy carbon electrode, J. Electroanal. Chem. 818 (2018) 236-249.
  • 12. F. Kuralay, H. Özyörük, A. Yıldız, Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinyferrocenium) film, Sens. Actuat. B: Chem., 109 (2005) 194-199.
  • 13. S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review, Biosens. Bioelectron., 14 (1999) 443-456.
  • 14. X. Liu, L. Zhang, S. Wei, S. Chen, X. Ou, Q. Lu, Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine, Biosens. Bioelectron., 57 (2014) 232-238.
  • 15. M.D. Zavolskova, V.N. Nikitina, E.D. Maksimova, E.E. Karyakiba, Constant potential amperometric flow-injection analysis of ions and neutral molecules transduced by electroactive (conductive) polymers, Anal. Chem., 91 (2019) 7495-7499.
  • 16. D.A.C. Brownson, C.E. Banks, Graphene electrochemistry: an overview of potential applications, Analyst, 135 (2010) 2768-2778.
  • 17. M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev., 39 (2010) 4146-4157.
  • 18. A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications, Chem. European J., 22 (2016) 153-159.
  • 19. A. Halder, M. Zhang, Q. Chi, Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms, Biosens. Bioelectron., 87 (2017) 764-771.
  • 20. O. Tovide, N. Jahed, C.E. Sunday, K. Kokpas, R.F. Ajayi, H.R. Makelane, K.M. Molapoi S.V. John, P.G. Baker, E.I. Iwuoha, Electro-oxidation of anthracene on polyanilino-graphene composite electrode, Sens. Actuat. B: Chem., 205 (2014) 184-192.
  • 21. N. Dükar, S. Tunç, K. Öztürk, S. Demirci, M. Dumangöz, M. Sönmez çelebi, F. Kuralay, Highly sensitive and selective dopamine sensing in biological fluids with one-pot prepared graphene/poly(o-phenylenediamine) modified electrodes, Mater. Chem. Phys., 228 (2019) 357-362.
  • 22. X. Feng, H. Cheng, Y. Pan, H. Zheng, Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite, Biosens. Bioelectron., 70 (2015) 411-417.
  • 23. E. Muthusankar, V.K. Ponnusamy, D. Ragupathy, Electrochemically sandwiched poly(diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor, Synt. Metals, 254 (2019) 134-140.
  • 24. X. Liu, H. Zhu, X. Yang, An electrochemical sensor for dopamine based on poly(o-phenylenediamine) functionalized with electrochemically reduced graphene oxide, RSC Adv. 4 (2014) 3706-3712.
  • 25. X. Wang, D. Sun, Y. Tong, Y. Zhong, Z. Chen, A voltammetric aptamer-based thrombin biosensor exploiting signal amplification via synergetic catalysis by DNAzyme and enzyme decorated AuPd nanoparticles on a poly(o-phenylenediamine) support, Microchim. Acta, 184 (2017) 1791-1799.
  • 26. F. Kuralay, A. Erdem, Gold nanoparticle/polymer nanocomposite for highly sensitive drug-DNA interaction, Analyst, 140 (2015) 2876-2880.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Doç. Dr. Filiz Kuralay 0000-0003-0356-9692

Yayımlanma Tarihi 1 Aralık 2019
Kabul Tarihi 13 Nisan 2020
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Kuralay, D. D. F. (2019). Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies. Hacettepe Journal of Biology and Chemistry, 47(4), 445-454. https://doi.org/10.15671/hjbc.676957
AMA Kuralay DDF. Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies. HJBC. Aralık 2019;47(4):445-454. doi:10.15671/hjbc.676957
Chicago Kuralay, Doç. Dr. Filiz. “Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies”. Hacettepe Journal of Biology and Chemistry 47, sy. 4 (Aralık 2019): 445-54. https://doi.org/10.15671/hjbc.676957.
EndNote Kuralay DDF (01 Aralık 2019) Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies. Hacettepe Journal of Biology and Chemistry 47 4 445–454.
IEEE D. D. F. Kuralay, “Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies”, HJBC, c. 47, sy. 4, ss. 445–454, 2019, doi: 10.15671/hjbc.676957.
ISNAD Kuralay, Doç. Dr. Filiz. “Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies”. Hacettepe Journal of Biology and Chemistry 47/4 (Aralık 2019), 445-454. https://doi.org/10.15671/hjbc.676957.
JAMA Kuralay DDF. Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies. HJBC. 2019;47:445–454.
MLA Kuralay, Doç. Dr. Filiz. “Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies”. Hacettepe Journal of Biology and Chemistry, c. 47, sy. 4, 2019, ss. 445-54, doi:10.15671/hjbc.676957.
Vancouver Kuralay DDF. Modified Graphite Surfaces Prepared for Electrochemical Biomolecular Interaction Detection Studies. HJBC. 2019;47(4):445-54.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc