Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of MIP-based QCM Sensors for Determination of Hyaluronic Acid (HA)

Yıl 2018, Cilt: 46 Sayı: 2, 273 - 283, 03.06.2018

Öz

I
n this study, quartz crystal microbalance (QCM) based recognition systems have been developed for the
determination of hyaluronic acid (HA). For this purpose, firstly; N-methacryloyl-l-tyrosine (MAT), MAT-DGlucuronic
acid (MAT-D-GA) and MAT-Cu(II)-D-Glucuronic acid (MAT-Cu(II)-D-GA) pre-organized monomers
have been synthesized, and characterized. Then, D-glucuronic acid active sites of HA biomacromolecule
have been imprinted on QCM sensor surface to create HA selective binding sites. In the last step, the binding
interactions, usabilities in recognition and determination of prepared sensors have been investigated. 

Kaynakça

  • Lapcík, L. Lapcík, S. De Smedt, J. Demeester, P. Chabrecek, Hyaluronan: preparation, structure, properties, and applications, Chem. Rev., 98 (1998) 2663–2684.
  • J.R.E. Fraser, T.C. Laurent, U.B.G. Laurent, Hyaluronan: its nature, distribution, functions and turnover, J. Intern. Med., 242 (1997) 27–33.
  • M. Karl, The polysaccharide of the vitreous humor, J. Biol. Chem., 107 (1934) 629–634.
  • T. Luan, Y. Fang, S. Al-Assaf, G.O. Phillips, H. Zhang, Compared molecular characterization of hyaluronan using multiple-detection techniques, Polymer, 52 (2011) 5648–5658.
  • H. Yu, G. Stephanopoulos, Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid, Metab. Eng., 10 (2008) 24–32.
  • L. Liu, Y. Liu, J. Li, G. Du, J. Chen, Microbial production of hyaluronic acid: current state, challenges, and perspectives, Microb. Cell Fact., 10 (2011) 1-9.
  • M.N. Collins, C. Birkinshaw, Hyaluronic acid based scaffolds for tissue engineering—a review, Carbohydr. Polym., 92 (2013) 1262–1279.
  • K. Kumari, P.H. Weigel, Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis., J. Biol. Chem., 272 (1997) 32539–32546.
  • Z. Cai, H. Zhang, Y. Wei, F. Cong, Hyaluronan-inorganic nanohybrid materials for biomedical applications, Biomacromolecules, 18 (2017) 1677–1696.
  • T. Luan, L. Wu, H. Zhang, Y. Wang, A study on the nature of intermolecular links in the cryotropic weak gels of hyaluronan, Carbohydr. Polym., 87 (2012) 2076–2085.
  • T. Luan, Y. Fang, S. Al-Assaf, G.O. Phillips, H. Zhang, Compared molecular characterization of hyaluronan using multiple-detection techniques, Polymer (Guildf), 52 (2011) 5648–5658.
  • C. Iavazzo, S. Athanasiou, E. Pitsouni, M.E. Falagas, Hyaluronic acid: an effective alternative treatment of interstitial cystitis, recurrent urinary tract infections, and hemorrhagic cystitis?, Eur. Urol., 51 (2007) 1534– 1541.
  • L. Wang, H. Zhang, A. Qin, Q. Jin, B.Z. Tang, J. Ji, Theranostic hyaluronic acid prodrug micelles with aggregation-induced emission characteristics for targeted drug delivery, Sci. China Chem., 59 (2016) 1609–1615.
  • J. Hernandez, I.M. Thompson, Diagnosis and treatment of prostate cancer., Med. Clin. North Am., 88 (2004) 267–79.
  • F. Yu, F. Zhang, T. Luan, Z. Zhang, H. Zhang, Rheological studies of hyaluronan solutions based on the scaling law and constitutive models, Polymer (Guildf), 55 (2014) 295–301.
  • H. Kim, H. Jeong, S. Han, S. Beack, B.W. Hwang, M. Shin, S.S. Oh, S.K. Hahn, Hyaluronate and its derivatives for customized biomedical applications, Biomaterials, 123 (2017) 155–171.
  • L. Sherman, J. Sleeman, P. Herrlich, H. Ponta, Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression, Curr. Opin. Cell Biol., 6 (1994) 726–733.
  • T. Imanari, T. Toida, I. Koshiishi, H. Toyoda, Highperformance liquid chromatographic analysis of glycosaminoglycan-derived oligosaccharides, J. Chromatogr. A, 720 (1996) 275-293.
  • A. L. Fluharty, J. A. Glick, N. M. Matusewicz, H. Kihara, High performance liquid chromatography determination of unsaturated disaccharides produced from chondroitin sulfates by chondroitinases, Biochem. Med., 27 (1982) 352-360.
  • M. E. Zebrower, F. J. Kieras, W. T. Brown, Analysis by high-performance liquid chromatography of hyaluronic acid and chondroitin sulfates, Anal. Biochem., 157 (1986) 93-99.
  • M. Kinoshita, H. Shiraishi, C. Muranushi, N. Mitsumori, T. Ando, Y. Oda, K. Kakehi, Determination of molecular mass of acidic polysaccharides by capillary electrophoresis, Biomed. Chromatogr., 16 (2002) 141- 145.
  • S. Hokputsa, K. Jumel, C. Alexander, S.E. Harding, A comparison of molecular mass determination of hyaluronic acid using SEC/MALLS and sedimentation equilibrium, Eur. Biophys. J. Biophys. Lett., 32 (2003), 450-456.
  • B.B. Prasad, A. Kumar, R. Singh, Molecularly imprinted polymer-based electrochemical sensor using functionalized fullerene as a nanomediator for ultratrace analysis of primaquine, Carbon, 109 (2016) 196-207.
  • E.B. Özkütük, S.E. Diltemiz, E. Özalp, R. Say, A. Ersöz, Ligand exchange based paraoxon imprınted QCM sensor, Mater. Sci. Eng. C, 33 (2013) 938–942.
  • S.E. Diltemiz, D. Hür, R. Keçili, A. Ersöz, R. Say, New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIPbased QCM sensors, Analyst, 138 (2013) 1558-1563.
  • E. Yilmaz, D. Majidi, E. Ozgur, A. Denizli, Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM, Sens. Actuat. B Chem., 209 (2015) 714–721.
  • M. Karabörk; E. Birlik Özkütük; A. Ersöz; R. Say, Selective Preconcentration of Fe3+ Using IonImprinted Thermosensitive Particles Hacettepe J. Biol. Chem., 38 (2010) 27-39.
  • Ç. Çiçek, F. Yılmaz, E. Özgür, H. Yavuz, A. Denizli, Molecularly Imprinted Quartz Crystal Microbalance Sensor (QCM) for Bilirubin Detection, Chemosensors, 4 (2016) 1-13.
  • D. Croux, A. Weustenraed, P. Pobedinskas, F. Horemans, H. Diliën, K. Haenen, T. Cleij, P. Wagner, R. Thoelen, W. De Ceuninck, Development of multichannel quartz crystal microbalances for MIP-based biosensing, Phys. Status Solidi., 209 (2012) 892–899.
  • G. Sener, E. Ozgur, E. Yılmaz, L. Uzun, R. Say, A. Denizli, Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles, Biosens. Bioelectron., 26 (2010) 815– 821.
  • S. Emir Diltemiz, R. Keçili, A. Ersöz, R. Say, Molecular imprinting technology in quartz crystal microbalance (QCM) sensors, Sensors (Basel), 17 (2017) 454-473.
  • D. Hur, S. Ekti, R. Say, N-acylbenzotriazole mediated synthesis of some methacrylamido amino acids, Lett. Org. Chem., 4 (2007) 585–587.
  • U. Latif, S. Can, O. Hayden, P. Grillberger, F.L. Dickert, Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors—detection of bioanalytes, Sens. Actuators B Chem., 176 (2013) 825–830.
  • W. Bal, M. Dyba, H. Kozłowski, The impact of the amino-acid sequence on the specificity of copper(II) interactions with peptides having nonco-ordinating side-chains., Acta Biochim. Pol., 44 (1997) 467–476.
  • L. Uzun, R. Uzek, S. Şenel, R. Say, A. Denizli, Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporatedmolecularly imprinted fluorescent nanoparticles, Mater. Sci. Eng. C, 33 (2013) 3432-3439.
  • C.L. Gatlin, F. Tureček, T. Vaisar, Gas-phase complexes of amino acids with Cu(II) and diimine ligands. Part I. Aliphatic and aromatic amino acids, J. Mass Spectrom., 30 (1995) 1605–1616.
  • H.A. Akdamar, N.Y. Sarıözlü, A.A. Özcan, A. Ersöz, A. Denizli, R. Say, Separation and purification of hyaluronic acid by glucuronic acid imprinted microbeads, Mater. Sci. Eng. C, 29 (2009) 1404–1408.
Yıl 2018, Cilt: 46 Sayı: 2, 273 - 283, 03.06.2018

Öz

Kaynakça

  • Lapcík, L. Lapcík, S. De Smedt, J. Demeester, P. Chabrecek, Hyaluronan: preparation, structure, properties, and applications, Chem. Rev., 98 (1998) 2663–2684.
  • J.R.E. Fraser, T.C. Laurent, U.B.G. Laurent, Hyaluronan: its nature, distribution, functions and turnover, J. Intern. Med., 242 (1997) 27–33.
  • M. Karl, The polysaccharide of the vitreous humor, J. Biol. Chem., 107 (1934) 629–634.
  • T. Luan, Y. Fang, S. Al-Assaf, G.O. Phillips, H. Zhang, Compared molecular characterization of hyaluronan using multiple-detection techniques, Polymer, 52 (2011) 5648–5658.
  • H. Yu, G. Stephanopoulos, Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid, Metab. Eng., 10 (2008) 24–32.
  • L. Liu, Y. Liu, J. Li, G. Du, J. Chen, Microbial production of hyaluronic acid: current state, challenges, and perspectives, Microb. Cell Fact., 10 (2011) 1-9.
  • M.N. Collins, C. Birkinshaw, Hyaluronic acid based scaffolds for tissue engineering—a review, Carbohydr. Polym., 92 (2013) 1262–1279.
  • K. Kumari, P.H. Weigel, Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis., J. Biol. Chem., 272 (1997) 32539–32546.
  • Z. Cai, H. Zhang, Y. Wei, F. Cong, Hyaluronan-inorganic nanohybrid materials for biomedical applications, Biomacromolecules, 18 (2017) 1677–1696.
  • T. Luan, L. Wu, H. Zhang, Y. Wang, A study on the nature of intermolecular links in the cryotropic weak gels of hyaluronan, Carbohydr. Polym., 87 (2012) 2076–2085.
  • T. Luan, Y. Fang, S. Al-Assaf, G.O. Phillips, H. Zhang, Compared molecular characterization of hyaluronan using multiple-detection techniques, Polymer (Guildf), 52 (2011) 5648–5658.
  • C. Iavazzo, S. Athanasiou, E. Pitsouni, M.E. Falagas, Hyaluronic acid: an effective alternative treatment of interstitial cystitis, recurrent urinary tract infections, and hemorrhagic cystitis?, Eur. Urol., 51 (2007) 1534– 1541.
  • L. Wang, H. Zhang, A. Qin, Q. Jin, B.Z. Tang, J. Ji, Theranostic hyaluronic acid prodrug micelles with aggregation-induced emission characteristics for targeted drug delivery, Sci. China Chem., 59 (2016) 1609–1615.
  • J. Hernandez, I.M. Thompson, Diagnosis and treatment of prostate cancer., Med. Clin. North Am., 88 (2004) 267–79.
  • F. Yu, F. Zhang, T. Luan, Z. Zhang, H. Zhang, Rheological studies of hyaluronan solutions based on the scaling law and constitutive models, Polymer (Guildf), 55 (2014) 295–301.
  • H. Kim, H. Jeong, S. Han, S. Beack, B.W. Hwang, M. Shin, S.S. Oh, S.K. Hahn, Hyaluronate and its derivatives for customized biomedical applications, Biomaterials, 123 (2017) 155–171.
  • L. Sherman, J. Sleeman, P. Herrlich, H. Ponta, Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression, Curr. Opin. Cell Biol., 6 (1994) 726–733.
  • T. Imanari, T. Toida, I. Koshiishi, H. Toyoda, Highperformance liquid chromatographic analysis of glycosaminoglycan-derived oligosaccharides, J. Chromatogr. A, 720 (1996) 275-293.
  • A. L. Fluharty, J. A. Glick, N. M. Matusewicz, H. Kihara, High performance liquid chromatography determination of unsaturated disaccharides produced from chondroitin sulfates by chondroitinases, Biochem. Med., 27 (1982) 352-360.
  • M. E. Zebrower, F. J. Kieras, W. T. Brown, Analysis by high-performance liquid chromatography of hyaluronic acid and chondroitin sulfates, Anal. Biochem., 157 (1986) 93-99.
  • M. Kinoshita, H. Shiraishi, C. Muranushi, N. Mitsumori, T. Ando, Y. Oda, K. Kakehi, Determination of molecular mass of acidic polysaccharides by capillary electrophoresis, Biomed. Chromatogr., 16 (2002) 141- 145.
  • S. Hokputsa, K. Jumel, C. Alexander, S.E. Harding, A comparison of molecular mass determination of hyaluronic acid using SEC/MALLS and sedimentation equilibrium, Eur. Biophys. J. Biophys. Lett., 32 (2003), 450-456.
  • B.B. Prasad, A. Kumar, R. Singh, Molecularly imprinted polymer-based electrochemical sensor using functionalized fullerene as a nanomediator for ultratrace analysis of primaquine, Carbon, 109 (2016) 196-207.
  • E.B. Özkütük, S.E. Diltemiz, E. Özalp, R. Say, A. Ersöz, Ligand exchange based paraoxon imprınted QCM sensor, Mater. Sci. Eng. C, 33 (2013) 938–942.
  • S.E. Diltemiz, D. Hür, R. Keçili, A. Ersöz, R. Say, New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIPbased QCM sensors, Analyst, 138 (2013) 1558-1563.
  • E. Yilmaz, D. Majidi, E. Ozgur, A. Denizli, Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM, Sens. Actuat. B Chem., 209 (2015) 714–721.
  • M. Karabörk; E. Birlik Özkütük; A. Ersöz; R. Say, Selective Preconcentration of Fe3+ Using IonImprinted Thermosensitive Particles Hacettepe J. Biol. Chem., 38 (2010) 27-39.
  • Ç. Çiçek, F. Yılmaz, E. Özgür, H. Yavuz, A. Denizli, Molecularly Imprinted Quartz Crystal Microbalance Sensor (QCM) for Bilirubin Detection, Chemosensors, 4 (2016) 1-13.
  • D. Croux, A. Weustenraed, P. Pobedinskas, F. Horemans, H. Diliën, K. Haenen, T. Cleij, P. Wagner, R. Thoelen, W. De Ceuninck, Development of multichannel quartz crystal microbalances for MIP-based biosensing, Phys. Status Solidi., 209 (2012) 892–899.
  • G. Sener, E. Ozgur, E. Yılmaz, L. Uzun, R. Say, A. Denizli, Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles, Biosens. Bioelectron., 26 (2010) 815– 821.
  • S. Emir Diltemiz, R. Keçili, A. Ersöz, R. Say, Molecular imprinting technology in quartz crystal microbalance (QCM) sensors, Sensors (Basel), 17 (2017) 454-473.
  • D. Hur, S. Ekti, R. Say, N-acylbenzotriazole mediated synthesis of some methacrylamido amino acids, Lett. Org. Chem., 4 (2007) 585–587.
  • U. Latif, S. Can, O. Hayden, P. Grillberger, F.L. Dickert, Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors—detection of bioanalytes, Sens. Actuators B Chem., 176 (2013) 825–830.
  • W. Bal, M. Dyba, H. Kozłowski, The impact of the amino-acid sequence on the specificity of copper(II) interactions with peptides having nonco-ordinating side-chains., Acta Biochim. Pol., 44 (1997) 467–476.
  • L. Uzun, R. Uzek, S. Şenel, R. Say, A. Denizli, Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporatedmolecularly imprinted fluorescent nanoparticles, Mater. Sci. Eng. C, 33 (2013) 3432-3439.
  • C.L. Gatlin, F. Tureček, T. Vaisar, Gas-phase complexes of amino acids with Cu(II) and diimine ligands. Part I. Aliphatic and aromatic amino acids, J. Mass Spectrom., 30 (1995) 1605–1616.
  • H.A. Akdamar, N.Y. Sarıözlü, A.A. Özcan, A. Ersöz, A. Denizli, R. Say, Separation and purification of hyaluronic acid by glucuronic acid imprinted microbeads, Mater. Sci. Eng. C, 29 (2009) 1404–1408.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Sibel Emir-diltemiz

Yayımlanma Tarihi 3 Haziran 2018
Kabul Tarihi 22 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 46 Sayı: 2

Kaynak Göster

APA Emir-diltemiz, S. (2018). Development of MIP-based QCM Sensors for Determination of Hyaluronic Acid (HA). Hacettepe Journal of Biology and Chemistry, 46(2), 273-283.
AMA Emir-diltemiz S. Development of MIP-based QCM Sensors for Determination of Hyaluronic Acid (HA). HJBC. Haziran 2018;46(2):273-283.
Chicago Emir-diltemiz, Sibel. “Development of MIP-Based QCM Sensors for Determination of Hyaluronic Acid (HA)”. Hacettepe Journal of Biology and Chemistry 46, sy. 2 (Haziran 2018): 273-83.
EndNote Emir-diltemiz S (01 Haziran 2018) Development of MIP-based QCM Sensors for Determination of Hyaluronic Acid (HA). Hacettepe Journal of Biology and Chemistry 46 2 273–283.
IEEE S. Emir-diltemiz, “Development of MIP-based QCM Sensors for Determination of Hyaluronic Acid (HA)”, HJBC, c. 46, sy. 2, ss. 273–283, 2018.
ISNAD Emir-diltemiz, Sibel. “Development of MIP-Based QCM Sensors for Determination of Hyaluronic Acid (HA)”. Hacettepe Journal of Biology and Chemistry 46/2 (Haziran 2018), 273-283.
JAMA Emir-diltemiz S. Development of MIP-based QCM Sensors for Determination of Hyaluronic Acid (HA). HJBC. 2018;46:273–283.
MLA Emir-diltemiz, Sibel. “Development of MIP-Based QCM Sensors for Determination of Hyaluronic Acid (HA)”. Hacettepe Journal of Biology and Chemistry, c. 46, sy. 2, 2018, ss. 273-8.
Vancouver Emir-diltemiz S. Development of MIP-based QCM Sensors for Determination of Hyaluronic Acid (HA). HJBC. 2018;46(2):273-8.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc