Yıl 2018,
Cilt: 46 Sayı: 3, 321 - 328, 01.09.2018
Adnan Ayna
,
Erol Akyılmaz
Kaynakça
- M. Campàs, R. Carpentier, R. Rouillon, Plant tissueand
photosynthesis-based biosensors, Biotechnol.
Adv., 26 (2008) 370–378.
- J.S. Sidwell, G.A. Rechnitz, Progress and challenges for
biosensors using plant tissue materials, Biosensors,
2 (1986) 221-233.
- M. Lieberman, A. Marks, A. Peet, Marks’ Basic
Medical Biochemistry: A Clinical Approach (4 ed.).
Philadelphia: Wolters Kluwer Health/Lippincott
Williams & Wilkins. p. 175. ISBN 9781608315727 2013.
- M.A. Mohsin, B.D. Liu, X.L. Zhang, W.J. Yang, L.S.
Liu, X. Jiang, Cellular-membrane inspired surface
modification of well aligned ZnO nanorods for
chemosensing of epinephrine, RSC Adv., 7 (2017)
3012-3020.
- P. Bougnères, C.L. Stunff, C. Pecqueur, E. Pinglier, P.
Adnot, D.J. Ricquier, In vivo resistance of lipolysis
to epinephrine. A new feature of childhood onset
obesity, Clin. Invest., 99 (1997) 2568-2573.
- P. Solich, C.K. Polydorou, M.A. Koupparis,
C.E. Efstathiou, Automated flow-injection
spectrophotometric determination of catecholamines
(epinephrine and isoproterenol) in pharmaceutical
formulations based on ferrous complex formation, J.
Pharm. Biomed. Anal., 22 (2000) 781–789.
- M.H. Sorouraddin, J.L. Manzoori, E. Kargarzadeh, A.
M.H. Shabani, Spectrophotometric determination of
some catecholamine drugs using sodium bismuthate.
J. Pharm. Biomed. Anal., 18 (1998) 877–881.
- V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb,
A simple and rapid HPLC-MS method for the
simultaneous determination of epinephrine,
norepinephrine, dopamine and 5-hydroxytryptamine:
application to the secretion of bovine chromaffin cell
cultures, J. Chromatogr. B., 847 (2007) 88–94.
- M.A. Fotopoulou, P.C. Ioannou, Post-column terbium
complexation and sensitized fluorescence detection
for the determination of norepinephrine, epinephrine
and dopamine using high-performance liquid
chromatography, Anal. Chim. Acta. 462 (2002) 179–
185.
- A. Kojo, E. Nalewajko, Determination of Epinephrine
by Flow-Injection Analysis Using Luminol
Hexacyanoferrate(III). Chemiluminescence Detection,
Chem. Anal., (Warsaw), 49 (2004) 653.
- W.K. Adeniyi, A.R. Wright, Novel fluorimetric assay
of trace analysis of epinephrine in human serum,
Spectrochim. Acta A., 74 (2009) 1001–1004.
- P. Davletbaeva, M. Falkova, E. Safonova, L. Moskvin, A.
Bulatov, Flow method based on cloud point extraction
for fluorometric determination of epinephrine in
human urine, Anal. Chim. Acta., 911 (2016) 69-74.
- S. Wei, G. Song, J.M. Lin, Separation and
determination of norepinephrine, epinephrine and
isoprinaline enantiomers by capillary electrophoresis
in pharmaceutical formulation and human serum. J.
Chromatogr. A., 1098 (2005) 166–171.
- F. Alpat, K. Özdemir, S. Kilinc, Voltammetric
determination of epinephrine in pharmaceutical
sample with a tyrosinase nanobiosensor, J. Sensors.
2016 Article ID 5653975, 9 pages.
- S.F. Fabiana, M. Yamashita, L. Angnes, Epinephrine
quantification in pharmaceutical formulations
utilizing plant tissue biosensors Biosen. Bioelectr., 21
(2006) 2283–2289.
- E. Akyilmaz, E. Dinckaya, A mushroom (Agaricus
bisporus) tissue homogenate based alcohol oxidase
electrode for alcohol determination in serum, Talanta,
53 (2000) 505-509.
- S.M. Chen, K.T. Peng, The electrochemical properties
of dopamine, epinephrine, norepinephrine, and
their electrocatalytic reactions on Cobalt(II)
hexacyanoferrate films, J. Electroanal. Chem., 547
(2003) 179-189.
- H.S. Wang, D.Q. Huang, R. Liu, Study on the
electrochemical behavior of epinephrine at a poly(3-
methylthiophene)-modified glassy carbon electrode,
J. Electroanal. Chem., 570 (2004) 83-90.
- M. Siddiq, K.D. Dolan, Characterization of polyphenol
oxidase from blueberry (Vaccinium corymbosum L.),
Food Chem., 218 (2017) 216–220.
Development of a Biosensor Based on Myrtle (Myrtus communis L.) Tissue Homogenate for Voltammetric Determination of Epinephrine
Yıl 2018,
Cilt: 46 Sayı: 3, 321 - 328, 01.09.2018
Adnan Ayna
,
Erol Akyılmaz
Öz
A plant tissue based biosensor was proposed for voltammetric determination of epinephrine (EP) in
pharmaceutical samples. The tissue homogenate was immobilized by crosslinking with glutaraldehyde
on the glassy carbon. The polyphenol oxidase enzymes present in fibers of a myrtle tree fruits maintained
high bioactivity on this biomaterial, catalyzing the oxidation of epinephrine to epinephrinequinone. Under
optimize working conditions, the biosensor showed a linear response in the range of 10–100 µM. The limit of
detection (LOD) was calculated as 3.2 × 10−6 mol L-1 (3.2 µM) (3σper slope). The reproducibility, expressed as the
relative standard deviation (RSD) for seven consecutive determinations of 5.0 × 10-5 mol L-1 EP was 4.6%. The
biosensor retained 70% activity after 11 days of storage in a phosphate buffer at 4°C. The applicability of this
biosensor was demonstrated with the analysis of real samples and a good correlation was obtained between
results acquired by the biosensor and those measured by spectrophotometric method. Such favorable results
obtained with the myrtle tissue homogenate based biosensor, joined with the simplicity and low-cost of its
preparation turns these procedures very attractive for EP quantification in pharmaceutical products.
Kaynakça
- M. Campàs, R. Carpentier, R. Rouillon, Plant tissueand
photosynthesis-based biosensors, Biotechnol.
Adv., 26 (2008) 370–378.
- J.S. Sidwell, G.A. Rechnitz, Progress and challenges for
biosensors using plant tissue materials, Biosensors,
2 (1986) 221-233.
- M. Lieberman, A. Marks, A. Peet, Marks’ Basic
Medical Biochemistry: A Clinical Approach (4 ed.).
Philadelphia: Wolters Kluwer Health/Lippincott
Williams & Wilkins. p. 175. ISBN 9781608315727 2013.
- M.A. Mohsin, B.D. Liu, X.L. Zhang, W.J. Yang, L.S.
Liu, X. Jiang, Cellular-membrane inspired surface
modification of well aligned ZnO nanorods for
chemosensing of epinephrine, RSC Adv., 7 (2017)
3012-3020.
- P. Bougnères, C.L. Stunff, C. Pecqueur, E. Pinglier, P.
Adnot, D.J. Ricquier, In vivo resistance of lipolysis
to epinephrine. A new feature of childhood onset
obesity, Clin. Invest., 99 (1997) 2568-2573.
- P. Solich, C.K. Polydorou, M.A. Koupparis,
C.E. Efstathiou, Automated flow-injection
spectrophotometric determination of catecholamines
(epinephrine and isoproterenol) in pharmaceutical
formulations based on ferrous complex formation, J.
Pharm. Biomed. Anal., 22 (2000) 781–789.
- M.H. Sorouraddin, J.L. Manzoori, E. Kargarzadeh, A.
M.H. Shabani, Spectrophotometric determination of
some catecholamine drugs using sodium bismuthate.
J. Pharm. Biomed. Anal., 18 (1998) 877–881.
- V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb,
A simple and rapid HPLC-MS method for the
simultaneous determination of epinephrine,
norepinephrine, dopamine and 5-hydroxytryptamine:
application to the secretion of bovine chromaffin cell
cultures, J. Chromatogr. B., 847 (2007) 88–94.
- M.A. Fotopoulou, P.C. Ioannou, Post-column terbium
complexation and sensitized fluorescence detection
for the determination of norepinephrine, epinephrine
and dopamine using high-performance liquid
chromatography, Anal. Chim. Acta. 462 (2002) 179–
185.
- A. Kojo, E. Nalewajko, Determination of Epinephrine
by Flow-Injection Analysis Using Luminol
Hexacyanoferrate(III). Chemiluminescence Detection,
Chem. Anal., (Warsaw), 49 (2004) 653.
- W.K. Adeniyi, A.R. Wright, Novel fluorimetric assay
of trace analysis of epinephrine in human serum,
Spectrochim. Acta A., 74 (2009) 1001–1004.
- P. Davletbaeva, M. Falkova, E. Safonova, L. Moskvin, A.
Bulatov, Flow method based on cloud point extraction
for fluorometric determination of epinephrine in
human urine, Anal. Chim. Acta., 911 (2016) 69-74.
- S. Wei, G. Song, J.M. Lin, Separation and
determination of norepinephrine, epinephrine and
isoprinaline enantiomers by capillary electrophoresis
in pharmaceutical formulation and human serum. J.
Chromatogr. A., 1098 (2005) 166–171.
- F. Alpat, K. Özdemir, S. Kilinc, Voltammetric
determination of epinephrine in pharmaceutical
sample with a tyrosinase nanobiosensor, J. Sensors.
2016 Article ID 5653975, 9 pages.
- S.F. Fabiana, M. Yamashita, L. Angnes, Epinephrine
quantification in pharmaceutical formulations
utilizing plant tissue biosensors Biosen. Bioelectr., 21
(2006) 2283–2289.
- E. Akyilmaz, E. Dinckaya, A mushroom (Agaricus
bisporus) tissue homogenate based alcohol oxidase
electrode for alcohol determination in serum, Talanta,
53 (2000) 505-509.
- S.M. Chen, K.T. Peng, The electrochemical properties
of dopamine, epinephrine, norepinephrine, and
their electrocatalytic reactions on Cobalt(II)
hexacyanoferrate films, J. Electroanal. Chem., 547
(2003) 179-189.
- H.S. Wang, D.Q. Huang, R. Liu, Study on the
electrochemical behavior of epinephrine at a poly(3-
methylthiophene)-modified glassy carbon electrode,
J. Electroanal. Chem., 570 (2004) 83-90.
- M. Siddiq, K.D. Dolan, Characterization of polyphenol
oxidase from blueberry (Vaccinium corymbosum L.),
Food Chem., 218 (2017) 216–220.