Research Article
BibTex RIS Cite
Year 2020, Volume: 48 Issue: 2, 119 - 123, 19.04.2020
https://doi.org/10.15671/hjbc.526094

Abstract

References

  • [1] E. Perland, R. Fredriksson, Classification Systems of Secondary Active Transporters, Trends Pharmacol. Sci., 38 (2017) 305–315.
  • [2] M. Rask-Andersen, S. Masuram, R. Fredriksson, H.B. Schiöth, Solute carriers as drug targets: current use, clinical trials and prospective, Mol. Aspects Med., 34 (2013) 702-710.
  • [3] F.S. Liu, Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review, Taiwan J. Obstet. Gynecol., 48 (2009) 239-244.
  • [4] M.D. Kars, Ö.D. İşeri, U. Gunduz, A.U. Ural, F. Arpacı, J. Molnar, Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds, Anticancer Res., 26 (2006) 4559-4568.
  • [5] M.D. Kars, Ö.D. İşeri, U. Gündüz, Drug resistant breast cancer cells overexpress ETS1 gene, Biomed. Pharmacother., 64 (2010) 458-462.
  • [6] M.D. Kars, Ö.D. İşeri, U. Gündüz, A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells, Eur. J. Pharmacol., 657 (2011) 4-9.
  • [7] M.D. Kars, G. Yıldırım, Determination of the Target Proteins in Chemotherapy Resistant Breast Cancer Stem Cell-Like Cells by Protein Array, Eur. J. Pharmacology, 848 (2019) 23-29.
  • [8] M.D. Kars Ö.D. İşeri, U. Gündüz, J. Molnar, Reversal of MDR by Synthetic and Natural Compounds in Drug Resistant MCF-7 Cell Lines, Chemotherapy, 54 (2008) 194-200.
  • [9] Ö.D., İşeri M.D Kars., F. Arpacı, U. Gündüz , Gene Expression Analysis of Drug Resistant MCF-7 Cells: Implications for Relation to Extracellular Matrix Proteins, Cancer Chemoth. Pharm., 65 (2010) 447-455.
  • [10] V . Tirino., V. Desiderio, F. Paino,G. Papaccio, M. De Rosa, Methods for Cancer Stem Cell Detection and Isolation, Somatic Stem Cells: Methods and Protocols, Methods Mol. Biol., 879 (2012) 32.
  • [11] P. Valent, D. Bonnet, R. De Maria, T. Lapidot, et al., Cancer stem cell definitions and terminology the devil is in the details, Nat. Rev. Cancer., 12 (2012) 767-775.
  • [12] Y.D. Bhutia, V. Ganapathy, Glutamine transporters in mammalian cells and their functions in physiology and cancer, Biochim. Biophys. Acta., 1863 (2016) 2531-2539.
  • [13] N. Shimozono, M. Jinnin, M. Masuzawa, M. Masuzawa, et al., NUP160 SLC43A3 is a novel recurrent fusion oncogene in angiosarcoma, Cancer Res., 75 (2015) 4458-4465.
  • [14] E. Pedraz-Cuesta, S. Christensen, A.A. Jensen, N.F. Jensen, et al., The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells, BMC Cancer., 15 (2015) 411.
  • [15] M. Masin, J. Vazquez, S. Rossi, S. Groeneveld, et al., GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer, Cancer Metab., 29 (2014) 11.
  • [16] Ö.D. İşeri, M.D. Kars, F. Arpacı, C. Atalay, I. Pak, U. Gündüz, Drug Resistant MCF-7 Cells Exhibit Epithelial-Mesenchymal Transition Gene Expression Pattern, Biomed. Pharmacother., 65 (2011) 40-45.
  • [17] L.Y. Dimberg, C.G. Towers, K. Behbakht, T.J. Hotz, et al., A Genome-Wide Loss-of-Function Screen Identifies SLC26A2 as a Novel Mediator of TRAIL Resistance, Mol Cancer Res., 15 (2017) 382-394.
  • [18] A.K. Witkiewicz, D. Whitaker-Menezes, A. Dasgupta, N.J. Philp, Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers, Cell Cycle, 11 (2012) 1108–1117.

Implications from a microarray analysis: Solute carrier proteins may be potential targets to combat stemness of breast cancer

Year 2020, Volume: 48 Issue: 2, 119 - 123, 19.04.2020
https://doi.org/10.15671/hjbc.526094

Abstract

Meme kanseri kök hücrelerinin kendi kendini yenilemesi,
kendiliğinden olan ve sonradan kazanılan ilaç direnci, meme kanserinin tedavisi
stratejilerini önleyen ana faktörlerdir. Yeni terapötik ajanlar geliştirmek
için yapılan çalışmalarda hedeflenecek olan biyobelirteç molekülleri
araştırılmaktadır. Bu çalışmada, meme kanseri kök hücrelerinin (MKKH)
özelliklerini taşıyan, antikanser ilaç-paklitaksele dirençli meme kanseri hücre
hattında tüm genom cDNA mikrodizin analizi yapılmıştır. İlaca duyarlı parental
MCF-7 hücre hattı kontrol grubu olarak kullanılmıştır. MKKH benzeri hücrelerde
SLC taşıyıcı proteinleri kodlayan ve aşırı ifade edilen genler analiz
edilmiştir. Elde edilen sonuçlara göre, 21 adet SLC proteini kodlayan genlerin
ifade düzeyleri 2.0 ve 35 kat arasında artmıştır.  SLC38A5, SLC43A3, SLC6A15, SLC1A1, SLC2A3,
SLC26A2, SLC22A15, SLC16A3 genlerinin ifade düzeyleri 9 ile 35 kat arasında
artmıştır. Dolayısıyla, ilgili proteinler potansiyel hedefler olarak kabul
edilebilir ve bu bilgiler, meme kanseri kök hücrelerini hedef alan
biyobelirteçlerin keşfedilmesi için yeni bir araştırma alanı açacaktır.



 

References

  • [1] E. Perland, R. Fredriksson, Classification Systems of Secondary Active Transporters, Trends Pharmacol. Sci., 38 (2017) 305–315.
  • [2] M. Rask-Andersen, S. Masuram, R. Fredriksson, H.B. Schiöth, Solute carriers as drug targets: current use, clinical trials and prospective, Mol. Aspects Med., 34 (2013) 702-710.
  • [3] F.S. Liu, Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review, Taiwan J. Obstet. Gynecol., 48 (2009) 239-244.
  • [4] M.D. Kars, Ö.D. İşeri, U. Gunduz, A.U. Ural, F. Arpacı, J. Molnar, Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds, Anticancer Res., 26 (2006) 4559-4568.
  • [5] M.D. Kars, Ö.D. İşeri, U. Gündüz, Drug resistant breast cancer cells overexpress ETS1 gene, Biomed. Pharmacother., 64 (2010) 458-462.
  • [6] M.D. Kars, Ö.D. İşeri, U. Gündüz, A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells, Eur. J. Pharmacol., 657 (2011) 4-9.
  • [7] M.D. Kars, G. Yıldırım, Determination of the Target Proteins in Chemotherapy Resistant Breast Cancer Stem Cell-Like Cells by Protein Array, Eur. J. Pharmacology, 848 (2019) 23-29.
  • [8] M.D. Kars Ö.D. İşeri, U. Gündüz, J. Molnar, Reversal of MDR by Synthetic and Natural Compounds in Drug Resistant MCF-7 Cell Lines, Chemotherapy, 54 (2008) 194-200.
  • [9] Ö.D., İşeri M.D Kars., F. Arpacı, U. Gündüz , Gene Expression Analysis of Drug Resistant MCF-7 Cells: Implications for Relation to Extracellular Matrix Proteins, Cancer Chemoth. Pharm., 65 (2010) 447-455.
  • [10] V . Tirino., V. Desiderio, F. Paino,G. Papaccio, M. De Rosa, Methods for Cancer Stem Cell Detection and Isolation, Somatic Stem Cells: Methods and Protocols, Methods Mol. Biol., 879 (2012) 32.
  • [11] P. Valent, D. Bonnet, R. De Maria, T. Lapidot, et al., Cancer stem cell definitions and terminology the devil is in the details, Nat. Rev. Cancer., 12 (2012) 767-775.
  • [12] Y.D. Bhutia, V. Ganapathy, Glutamine transporters in mammalian cells and their functions in physiology and cancer, Biochim. Biophys. Acta., 1863 (2016) 2531-2539.
  • [13] N. Shimozono, M. Jinnin, M. Masuzawa, M. Masuzawa, et al., NUP160 SLC43A3 is a novel recurrent fusion oncogene in angiosarcoma, Cancer Res., 75 (2015) 4458-4465.
  • [14] E. Pedraz-Cuesta, S. Christensen, A.A. Jensen, N.F. Jensen, et al., The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells, BMC Cancer., 15 (2015) 411.
  • [15] M. Masin, J. Vazquez, S. Rossi, S. Groeneveld, et al., GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer, Cancer Metab., 29 (2014) 11.
  • [16] Ö.D. İşeri, M.D. Kars, F. Arpacı, C. Atalay, I. Pak, U. Gündüz, Drug Resistant MCF-7 Cells Exhibit Epithelial-Mesenchymal Transition Gene Expression Pattern, Biomed. Pharmacother., 65 (2011) 40-45.
  • [17] L.Y. Dimberg, C.G. Towers, K. Behbakht, T.J. Hotz, et al., A Genome-Wide Loss-of-Function Screen Identifies SLC26A2 as a Novel Mediator of TRAIL Resistance, Mol Cancer Res., 15 (2017) 382-394.
  • [18] A.K. Witkiewicz, D. Whitaker-Menezes, A. Dasgupta, N.J. Philp, Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers, Cell Cycle, 11 (2012) 1108–1117.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Meltem Demirel Kars 0000-0002-7300-4075

Publication Date April 19, 2020
Acceptance Date April 19, 2020
Published in Issue Year 2020 Volume: 48 Issue: 2

Cite

APA Demirel Kars, M. (2020). Implications from a microarray analysis: Solute carrier proteins may be potential targets to combat stemness of breast cancer. Hacettepe Journal of Biology and Chemistry, 48(2), 119-123. https://doi.org/10.15671/hjbc.526094
AMA Demirel Kars M. Implications from a microarray analysis: Solute carrier proteins may be potential targets to combat stemness of breast cancer. HJBC. April 2020;48(2):119-123. doi:10.15671/hjbc.526094
Chicago Demirel Kars, Meltem. “Implications from a Microarray Analysis: Solute Carrier Proteins May Be Potential Targets to Combat Stemness of Breast Cancer”. Hacettepe Journal of Biology and Chemistry 48, no. 2 (April 2020): 119-23. https://doi.org/10.15671/hjbc.526094.
EndNote Demirel Kars M (April 1, 2020) Implications from a microarray analysis: Solute carrier proteins may be potential targets to combat stemness of breast cancer. Hacettepe Journal of Biology and Chemistry 48 2 119–123.
IEEE M. Demirel Kars, “Implications from a microarray analysis: Solute carrier proteins may be potential targets to combat stemness of breast cancer”, HJBC, vol. 48, no. 2, pp. 119–123, 2020, doi: 10.15671/hjbc.526094.
ISNAD Demirel Kars, Meltem. “Implications from a Microarray Analysis: Solute Carrier Proteins May Be Potential Targets to Combat Stemness of Breast Cancer”. Hacettepe Journal of Biology and Chemistry 48/2 (April 2020), 119-123. https://doi.org/10.15671/hjbc.526094.
JAMA Demirel Kars M. Implications from a microarray analysis: Solute carrier proteins may be potential targets to combat stemness of breast cancer. HJBC. 2020;48:119–123.
MLA Demirel Kars, Meltem. “Implications from a Microarray Analysis: Solute Carrier Proteins May Be Potential Targets to Combat Stemness of Breast Cancer”. Hacettepe Journal of Biology and Chemistry, vol. 48, no. 2, 2020, pp. 119-23, doi:10.15671/hjbc.526094.
Vancouver Demirel Kars M. Implications from a microarray analysis: Solute carrier proteins may be potential targets to combat stemness of breast cancer. HJBC. 2020;48(2):119-23.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc