Synthesis and characterization of p (N-isopropylacrylamide) hydrogels with tunable swelling behavior using different crosslinkers
Year 2021,
Volume: 49 Issue: 1, 93 - 106, 01.01.2021
Şenol Kubilay
,
Kadir Selçuk
,
Dursun Sarıaydın
Abstract
In the present study, a set of hydrogels were synthesized using N-isopropylacrylamide with various cross linkers at various dosages via free radical polymerization. Thermal and structural properties of the synthesized hydrogels were characterized via thermogravimetric analyzer (TGA) and Fourier Transformation Infrared Radiation (FTIR) spectroscopy. The effect of crosslinkers such as N,N´-Methylenebisacrylamide, ethylene glycol dimethacrylate (EGDMA) polyethylene glycol dimethacrylate (p(EGDMA), and polyethylene glycol diacrylate (p(EGDA) (Mn:258, Mn:575, Mn:700) were used in p(NIPAM) hydrogel preparation and their effect on swelling behavior was investigated. It was found that the swelling rate was increased as the molecular masses of the cross-linkers used decreased, whereas the hydrogel prepared using p(EGDA)-700 swelled more than the other p(EGDA) crosslinked p(NIPAM) hydrogels.
Supporting Institution
Van Yüzüncü Yıl University, Coordinatorship of Scientific Research Projects
Project Number
BAP FBA-7893-2019
Thanks
The authors grateful for the financial from Van Yüzüncü Yıl University, Coordinatorship of Scientific Research Projects.
References
- 1. S. Maji, V.V. Jerca, F.A. Jerca, and R. Hoogenboom, Smart polymeric gels, in Polymeric Gels, Woodhead Publishing, Elsevier Group, Cambridge, England, 2018.
2. J. Kopecek, Hydrogels from Soft Contact Lenses and Implants to Self-Assembled Nanomaterials, J Polym. Sci. A Polym. Chem., 47 (2009) 5929-5946.
3. L.A. Shah, M. Khan, R. Javed, M. Sayed, M.S. Khan, A. Khan, and M. Ullah, Superabsorbent polymer hydrogels with good thermal and mechanical properties for removal of selected heavy metal ions, J Clean Prod., 201 (2018) 78-87.
4. S. Argin, P. Kofinas, and Y.M. Lo, The cell release kinetics and the swelling behavior of physically crosslinked xanthan–chitosan hydrogels in simulated gastrointestinal conditions, Food Hydrocolloids, 40 (2014) 138-144.
5. N.K. Singh and D.S. Lee, In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery, J Control Release, 193 (2014) 214-27.
6. J. Ma, X. Li, and Y. Bao, Advances in cellulose-based superabsorbent hydrogels, RSC Adv., 5 (2015) 59745-59757.
7. S. Sayyar, E. Murray, B. Thompson, J. Chung, D.L. Officer, S. Gambhir, G.M. Spinks, and G.G. Wallace, Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater. Chem. B, 3 (2015) 481-490.
8. R. Javed, L.A. Shah, M. Sayed, and M.S. Khan, Uptake of heavy metal ions from aqueous media by hydrogels and their conversion to nanoparticles for generation of a catalyst system: two-fold application study. RSC Adv., 8 (2018) 14787-14797.
9. X. Bai, M. Gao, S. Syed, J. Zhuang, X. Xu, and X.Q. Zhang, Bioactive hydrogels for bone regeneration. Bioact. Mater., 3 (2018) 401-417.
10. N. Gawande and A.A. Mungray, Superabsorbent polymer (SAP) hydrogels for protein enrichment, Sep. Purif. Technol., 150 (2015) 86-94.
11. N. Ferreira, L. Ferreira, V. Cardoso, F. Boni, A. Souza, and M. Gremião, Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches, Eur. Polym. J., 99 (2018) 117-133.
12. S.C. Lee, I.K. Kwon, and K. Park, Hydrogels for delivery of bioactive agents: a historical perspective, Adv. Drug Deliv. Rev., 65 (2013) 17-20.
13. S. Chaterji, I.K. Kwon, and K. Park, Smart Polymeric Gels: Redefining the Limits of Biomedical Devices, Prog. Polym. Sci., 32 (2007) 1083-1122.
14. R. Masteikova, Z. Chalupova, and Z. Sklubalova, Stimuli-sensitive hydrogels in controlled and sustained drug delivery, Medicina (Kaunas), 39 Suppl 2 (2003) 19-24.
15. F. Xin, Q. Lu, B. Liu, S. Yuan, R. Zhang, Y. Wu, and Y. Yu, Metal-ion-mediated hydrogels with thermo-responsiveness for smart windows, Eur. Polym. J., 99 (2018) 65-71.
16. B. Hilmi, Z.A. Hamid, H.M. Akil, and B.J.P.C. Yahaya, The Characteristics of the Smart Polymeras Temperature or pH-responsive Hydrogel, Procedia Chem., 19 (2016) 406-409.
17. W. Fan, Y. Jin, Y. Huang, J. Pan, W. Du, and Z. Pu, Room‐temperature self‐healing and reprocessing of Diselenide‐containing waterborne polyurethanes under visible light, J. Appl. Polym. Sci., 136 (2019) 47071.
18. W.F. Lai and A.L. Rogach, Hydrogel-Based Materials for Delivery of Herbal Medicines, ACS Appl. Mater. Interfaces, 9 (2017) 11309-11320.
19. W. Lee, D. Kim, S. Lee, J. Park, S. Oh, G. Kim, J. Lim, and J. Kim, Stimuli-responsive switchable organic-inorganic nanocomposite materials, Nano Today, 23 (2018) 97-123.
20. E.V. Skorb and D.V. Andreeva, Layer-by-Layer approaches for formation of smart self-healing materials, Polym. Chem., 4 (2013) 4834-4845.
21. Z. Song, R. Liu, H. Zhu, Y. Lu, X. Li, and H. Zhu, Smart inks based on AIPE-active heteroleptic Ir (III) complexes, Sens. Actuators B Chem., 279 (2019) 385-392.
22. X. Li, Y. Xie, B. Song, H.L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, A Stimuli-Responsive Smart Lanthanide Nanocomposite for Multidimensional Optical Recording and Encryption, Angew. Chem. Int. Ed. Engl., 56 (2017) 2689-2693.
23. M.D. Manrique-Juárez, S. Rat, L. Salmon, G. Molnár, C.M. Quintero, L. Nicu, H.J. Shepherd, and A. Bousseksou, Switchable molecule-based materials for micro-and nanoscale actuating applications: Achievements and prospects, Coord. Chem. Rev., 308 (2016) 395-408.
24. K.Y. Zhang, S. Liu, Q. Zhao, and W. Huang, Stimuli–responsive metallopolymers, Coord. Chem. Rev., 319 (2016) 180-195.
25. Y.H. Bae, T. Okano, and S.W. Kim, Temperature dependence of swelling of crosslinked poly (N, N′‐alkyl substituted acrylamides) in water, J Polym. Sci. Pol. Phys., 28 (1990) 923-936.
26. D. Wu, X. Xie, A.A. Kadi, and Y. Zhang, Photosensitive peptide hydrogels as smart materials for applications, Chinese Chem. Lett., 29 (2018) 1098-1104.
27. O. Ozay, S. Ekici, Y. Baran, N. Aktas, and N. Sahiner, Removal of toxic metal ions with magnetic hydrogels, Water Res., 43 (2009) 4403-11.
28. N. Sahiner and P. Ilgin, Soft core-shell polymeric nanoparticles with magnetic property for potential guided drug delivery, Curr. Nanosci., 6 (2010) 483-491.
29. N. Sahiner, Super macroporous poly (N‐isopropyl acrylamide) cryogel for separation purpose, Polym. Advan. Technol., 29 (2018) 2184-2191.
30. A. Halperin, M. Kroger, and F.M. Winnik, Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research, Angew. Chem. Int. Ed. Engl., 54 (2015) 15342-67.
31. M.N.I. Shiblee, K. Ahmed, A. Khosla, M. Kawakami, and H. Furukawa, 3D printing of shape memory hydrogels with tunable mechanical properties, Soft Matter, 14 (2018) 7809-7817.
32. C. Jiao, Y. Chen, T. Liu, X. Peng, Y. Zhao, J. Zhang, Y. Wu, H. Wang, and interfaces, Rigid and strong thermoresponsive shape memory hydrogels transformed from poly (vinylpyrrolidone-co-acryloxy acetophenone) organogels, ACS Appl. Mater. Interfaces, 10 (2018) 32707-32716.
33. X. Le, W. Lu, H. Xiao, L. Wang, C. Ma, J. Zhang, Y. Huang, and T. Chen, Fe(3+)-, pH-, Thermoresponsive Supramolecular Hydrogel with Multishape Memory Effect, ACS Appl. Mater. Interfaces, 9 (2017) 9038-9044.
34. X.K. Lin, L. Chen, Y.P. Zhao, and Z.Z. Dong, Synthesis and characterization of thermoresponsive shape-memory poly (stearyl acrylate-co-acrylamide) hydrogels, J. Mater. Sci., 45 (2010) 2703-2707.
35. M.V. Martínez, C.R. Rivarola, M.C. Miras, C.A. Barbero, and A.B. Chemical, A colorimetric iron sensor based on the partition of phenanthroline complexes into polymeric hydrogels. Combinatorial synthesis and high throughput screening of the hydrogel matrix, Sens. Actuators B Chem., 241 (2017) 19-32.
36. E. Karadağ, D. Saraydın, O. Güven, and Engineering, Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers, Macromol. Mater. Eng., 286 (2001) 34-42.
37. D. Saraydin, E. Karadağ, Y. Caldiran, and O. Güven, Nicotine-selective radiation-induced poly (acrylamide/maleic acid) hydrogels, Radiat. Phys. Chem., 60 (2001) 203-210.
38. D. Saraydın, E. Karadag, Y. Işıkver, N. Şahiner, and O. Güven, The influence of preparation methods on the swelling and network properties of acrylamide hydrogels with crosslinkers, J Macromol. Sci. A, 41 (2004) 419-431.
39. D. Saraydin, H.N. Öztop, E. Karadag, Y. Çaldiran, O. Güven, and biotechnology, Influence of some amino acids on the dynamic swelling behavior of radiation-induced acrylamide hydrogel, Appl. Biochem. Biotechnol., 82 (1999) 115-125.
40. C. Peniche, M.E. Cohen, B. Vázquez, and J.J.P. San Román, Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers, Polymer, 38 (1997) 5977-5982.
41. C. Boztepe, M. Solener, M. Yuceer, A. Kunkul, O.S. Kabasakal, and Technology, Modeling of swelling behaviors of acrylamide-based polymeric hydrogels by intelligent system, J Disper. Sci. Technol., 36 (2015) 1647-1656.
42. E. Karadaǧ, Ö.B. Üzüm, and D. Saraydin, Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels, Eur. Polym. J., 38 (2002) 2133-2141.
43. M.T.A. Ende and N.A. Peppas, Transport of ionizable drugs and proteins in crosslinked poly (acrylic acid) and poly (acrylic acid‐co‐2‐hydroxyethyl methacrylate) hydrogels. I. Polymer characterization, J. Appl. Polym. Sci., 59 (1996) 673-685.
44. N.A. Peppas and N.M. Franson, The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers, J. Polym. Sci., 21 (1983) 983-997.
45. J.E. Kennedy and C.L. Higginbotham, Synthesis and characterisation of styrene butadiene styrene based grafted copolymers for use in potential biomedical applications, Biomedical engineering, Trends in materials science, InTech Publishing, Rijeka, Croatia, 2011.
Year 2021,
Volume: 49 Issue: 1, 93 - 106, 01.01.2021
Şenol Kubilay
,
Kadir Selçuk
,
Dursun Sarıaydın
Project Number
BAP FBA-7893-2019
References
- 1. S. Maji, V.V. Jerca, F.A. Jerca, and R. Hoogenboom, Smart polymeric gels, in Polymeric Gels, Woodhead Publishing, Elsevier Group, Cambridge, England, 2018.
2. J. Kopecek, Hydrogels from Soft Contact Lenses and Implants to Self-Assembled Nanomaterials, J Polym. Sci. A Polym. Chem., 47 (2009) 5929-5946.
3. L.A. Shah, M. Khan, R. Javed, M. Sayed, M.S. Khan, A. Khan, and M. Ullah, Superabsorbent polymer hydrogels with good thermal and mechanical properties for removal of selected heavy metal ions, J Clean Prod., 201 (2018) 78-87.
4. S. Argin, P. Kofinas, and Y.M. Lo, The cell release kinetics and the swelling behavior of physically crosslinked xanthan–chitosan hydrogels in simulated gastrointestinal conditions, Food Hydrocolloids, 40 (2014) 138-144.
5. N.K. Singh and D.S. Lee, In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery, J Control Release, 193 (2014) 214-27.
6. J. Ma, X. Li, and Y. Bao, Advances in cellulose-based superabsorbent hydrogels, RSC Adv., 5 (2015) 59745-59757.
7. S. Sayyar, E. Murray, B. Thompson, J. Chung, D.L. Officer, S. Gambhir, G.M. Spinks, and G.G. Wallace, Processable conducting graphene/chitosan hydrogels for tissue engineering. J Mater. Chem. B, 3 (2015) 481-490.
8. R. Javed, L.A. Shah, M. Sayed, and M.S. Khan, Uptake of heavy metal ions from aqueous media by hydrogels and their conversion to nanoparticles for generation of a catalyst system: two-fold application study. RSC Adv., 8 (2018) 14787-14797.
9. X. Bai, M. Gao, S. Syed, J. Zhuang, X. Xu, and X.Q. Zhang, Bioactive hydrogels for bone regeneration. Bioact. Mater., 3 (2018) 401-417.
10. N. Gawande and A.A. Mungray, Superabsorbent polymer (SAP) hydrogels for protein enrichment, Sep. Purif. Technol., 150 (2015) 86-94.
11. N. Ferreira, L. Ferreira, V. Cardoso, F. Boni, A. Souza, and M. Gremião, Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches, Eur. Polym. J., 99 (2018) 117-133.
12. S.C. Lee, I.K. Kwon, and K. Park, Hydrogels for delivery of bioactive agents: a historical perspective, Adv. Drug Deliv. Rev., 65 (2013) 17-20.
13. S. Chaterji, I.K. Kwon, and K. Park, Smart Polymeric Gels: Redefining the Limits of Biomedical Devices, Prog. Polym. Sci., 32 (2007) 1083-1122.
14. R. Masteikova, Z. Chalupova, and Z. Sklubalova, Stimuli-sensitive hydrogels in controlled and sustained drug delivery, Medicina (Kaunas), 39 Suppl 2 (2003) 19-24.
15. F. Xin, Q. Lu, B. Liu, S. Yuan, R. Zhang, Y. Wu, and Y. Yu, Metal-ion-mediated hydrogels with thermo-responsiveness for smart windows, Eur. Polym. J., 99 (2018) 65-71.
16. B. Hilmi, Z.A. Hamid, H.M. Akil, and B.J.P.C. Yahaya, The Characteristics of the Smart Polymeras Temperature or pH-responsive Hydrogel, Procedia Chem., 19 (2016) 406-409.
17. W. Fan, Y. Jin, Y. Huang, J. Pan, W. Du, and Z. Pu, Room‐temperature self‐healing and reprocessing of Diselenide‐containing waterborne polyurethanes under visible light, J. Appl. Polym. Sci., 136 (2019) 47071.
18. W.F. Lai and A.L. Rogach, Hydrogel-Based Materials for Delivery of Herbal Medicines, ACS Appl. Mater. Interfaces, 9 (2017) 11309-11320.
19. W. Lee, D. Kim, S. Lee, J. Park, S. Oh, G. Kim, J. Lim, and J. Kim, Stimuli-responsive switchable organic-inorganic nanocomposite materials, Nano Today, 23 (2018) 97-123.
20. E.V. Skorb and D.V. Andreeva, Layer-by-Layer approaches for formation of smart self-healing materials, Polym. Chem., 4 (2013) 4834-4845.
21. Z. Song, R. Liu, H. Zhu, Y. Lu, X. Li, and H. Zhu, Smart inks based on AIPE-active heteroleptic Ir (III) complexes, Sens. Actuators B Chem., 279 (2019) 385-392.
22. X. Li, Y. Xie, B. Song, H.L. Zhang, H. Chen, H. Cai, W. Liu, and Y. Tang, A Stimuli-Responsive Smart Lanthanide Nanocomposite for Multidimensional Optical Recording and Encryption, Angew. Chem. Int. Ed. Engl., 56 (2017) 2689-2693.
23. M.D. Manrique-Juárez, S. Rat, L. Salmon, G. Molnár, C.M. Quintero, L. Nicu, H.J. Shepherd, and A. Bousseksou, Switchable molecule-based materials for micro-and nanoscale actuating applications: Achievements and prospects, Coord. Chem. Rev., 308 (2016) 395-408.
24. K.Y. Zhang, S. Liu, Q. Zhao, and W. Huang, Stimuli–responsive metallopolymers, Coord. Chem. Rev., 319 (2016) 180-195.
25. Y.H. Bae, T. Okano, and S.W. Kim, Temperature dependence of swelling of crosslinked poly (N, N′‐alkyl substituted acrylamides) in water, J Polym. Sci. Pol. Phys., 28 (1990) 923-936.
26. D. Wu, X. Xie, A.A. Kadi, and Y. Zhang, Photosensitive peptide hydrogels as smart materials for applications, Chinese Chem. Lett., 29 (2018) 1098-1104.
27. O. Ozay, S. Ekici, Y. Baran, N. Aktas, and N. Sahiner, Removal of toxic metal ions with magnetic hydrogels, Water Res., 43 (2009) 4403-11.
28. N. Sahiner and P. Ilgin, Soft core-shell polymeric nanoparticles with magnetic property for potential guided drug delivery, Curr. Nanosci., 6 (2010) 483-491.
29. N. Sahiner, Super macroporous poly (N‐isopropyl acrylamide) cryogel for separation purpose, Polym. Advan. Technol., 29 (2018) 2184-2191.
30. A. Halperin, M. Kroger, and F.M. Winnik, Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research, Angew. Chem. Int. Ed. Engl., 54 (2015) 15342-67.
31. M.N.I. Shiblee, K. Ahmed, A. Khosla, M. Kawakami, and H. Furukawa, 3D printing of shape memory hydrogels with tunable mechanical properties, Soft Matter, 14 (2018) 7809-7817.
32. C. Jiao, Y. Chen, T. Liu, X. Peng, Y. Zhao, J. Zhang, Y. Wu, H. Wang, and interfaces, Rigid and strong thermoresponsive shape memory hydrogels transformed from poly (vinylpyrrolidone-co-acryloxy acetophenone) organogels, ACS Appl. Mater. Interfaces, 10 (2018) 32707-32716.
33. X. Le, W. Lu, H. Xiao, L. Wang, C. Ma, J. Zhang, Y. Huang, and T. Chen, Fe(3+)-, pH-, Thermoresponsive Supramolecular Hydrogel with Multishape Memory Effect, ACS Appl. Mater. Interfaces, 9 (2017) 9038-9044.
34. X.K. Lin, L. Chen, Y.P. Zhao, and Z.Z. Dong, Synthesis and characterization of thermoresponsive shape-memory poly (stearyl acrylate-co-acrylamide) hydrogels, J. Mater. Sci., 45 (2010) 2703-2707.
35. M.V. Martínez, C.R. Rivarola, M.C. Miras, C.A. Barbero, and A.B. Chemical, A colorimetric iron sensor based on the partition of phenanthroline complexes into polymeric hydrogels. Combinatorial synthesis and high throughput screening of the hydrogel matrix, Sens. Actuators B Chem., 241 (2017) 19-32.
36. E. Karadağ, D. Saraydın, O. Güven, and Engineering, Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers, Macromol. Mater. Eng., 286 (2001) 34-42.
37. D. Saraydin, E. Karadağ, Y. Caldiran, and O. Güven, Nicotine-selective radiation-induced poly (acrylamide/maleic acid) hydrogels, Radiat. Phys. Chem., 60 (2001) 203-210.
38. D. Saraydın, E. Karadag, Y. Işıkver, N. Şahiner, and O. Güven, The influence of preparation methods on the swelling and network properties of acrylamide hydrogels with crosslinkers, J Macromol. Sci. A, 41 (2004) 419-431.
39. D. Saraydin, H.N. Öztop, E. Karadag, Y. Çaldiran, O. Güven, and biotechnology, Influence of some amino acids on the dynamic swelling behavior of radiation-induced acrylamide hydrogel, Appl. Biochem. Biotechnol., 82 (1999) 115-125.
40. C. Peniche, M.E. Cohen, B. Vázquez, and J.J.P. San Román, Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers, Polymer, 38 (1997) 5977-5982.
41. C. Boztepe, M. Solener, M. Yuceer, A. Kunkul, O.S. Kabasakal, and Technology, Modeling of swelling behaviors of acrylamide-based polymeric hydrogels by intelligent system, J Disper. Sci. Technol., 36 (2015) 1647-1656.
42. E. Karadaǧ, Ö.B. Üzüm, and D. Saraydin, Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels, Eur. Polym. J., 38 (2002) 2133-2141.
43. M.T.A. Ende and N.A. Peppas, Transport of ionizable drugs and proteins in crosslinked poly (acrylic acid) and poly (acrylic acid‐co‐2‐hydroxyethyl methacrylate) hydrogels. I. Polymer characterization, J. Appl. Polym. Sci., 59 (1996) 673-685.
44. N.A. Peppas and N.M. Franson, The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers, J. Polym. Sci., 21 (1983) 983-997.
45. J.E. Kennedy and C.L. Higginbotham, Synthesis and characterisation of styrene butadiene styrene based grafted copolymers for use in potential biomedical applications, Biomedical engineering, Trends in materials science, InTech Publishing, Rijeka, Croatia, 2011.