BibTex RIS Kaynak Göster

Use of Bayesian Approach in Chemistry

Yıl 2011, Cilt: 39 Sayı: 1, 19 - 22, 01.01.2011

Öz

Bayesian approach is a popular topic today in many fields of study in which statistics is used. The availability of stochastic simulation technique such as Markov Chain Monte Carlo makes exact Bayesian solution possible even in very complex and high dimensional models. The purpose of this short review paper is to emphasize the basic principles and to show the use of Markov Chain Monte Carlo technique for Chemistry data.

Kaynakça

  • A. Gelman, J.B. Carlin, S.H. Stern, D.B. Rubin, Bayesian data analysis, Chapman and Hall, 2004.
  • D.B. Hibbert, N. Armstrong, An introduction to Bayesian methods for analyzing chemistry data: Part II: A review of applications of Bayesian methods in Chemistry, Chemometrics and intelligent laboratory systems, 97(2) (2009) 211.
  • A. O’Hagan, Bayesian statistics: principles and benefits, Wageningen UR frontis series, Bayesian statistics and quality modeling in agro-food production chain, 3 (2004) 31.
  • A. O’Hagan, Eliciting expert beliefs in substantial practical applications, The statistician, 47 (1998) 21.
  • J.M. Bernardo, A.F.M. Smith, Bayesian theory, Wiley, 1994.
  • G. Wright, P. Ayton, (eds.), Subjective probability, Wiley, 1994.
  • The opportunities and advantages of using Bayesian statistics in clinical trials, http://www.tesella.com.
  • D. Gamerman, Markov Chain Monte Carlo: Stochastic simulation for Bayesian inference, Chapman and Hall, 1997.
  • B.P. Carlin, T.A. Louis, Bayesian methods for data analysis, CRC Press, 2008.
  • A. Gelman, D.B. Rubin, Inference from iterative simulation using multiple sequences (with discussion), Statistical Science, 7 (1992) 457.
  • S. Brooks, P. Giudici, MCMC convergence assessment via two way ANOVA, J. Computational and Graphical Statistics, 9 (2000) 266.

Bayesci Yaklaşımın Kimyada Kullanımı

Yıl 2011, Cilt: 39 Sayı: 1, 19 - 22, 01.01.2011

Öz

Günümüzde Bayesci yaklaşım istatistiğin kullanıldığı birçok alanda revaçta olan bir yaklaşımdır. Stokastik simülasyon tekniği olan Markov Zinciri Monte Carlo yönteminin varlığı, karmaşık ve yüksek boyutlu modellerde bile Bayesci çözümlemelerin elde edilmesine olanak sağlar. Bu kısa derlemenin amacı, Bayesci yaklaşımın temel ilkeleri üzerinde durmak ve Markov Zinciri Monte Carlo yönteminin kimya verileri için nasıl kullanılabileceğini göstermektir

Kaynakça

  • A. Gelman, J.B. Carlin, S.H. Stern, D.B. Rubin, Bayesian data analysis, Chapman and Hall, 2004.
  • D.B. Hibbert, N. Armstrong, An introduction to Bayesian methods for analyzing chemistry data: Part II: A review of applications of Bayesian methods in Chemistry, Chemometrics and intelligent laboratory systems, 97(2) (2009) 211.
  • A. O’Hagan, Bayesian statistics: principles and benefits, Wageningen UR frontis series, Bayesian statistics and quality modeling in agro-food production chain, 3 (2004) 31.
  • A. O’Hagan, Eliciting expert beliefs in substantial practical applications, The statistician, 47 (1998) 21.
  • J.M. Bernardo, A.F.M. Smith, Bayesian theory, Wiley, 1994.
  • G. Wright, P. Ayton, (eds.), Subjective probability, Wiley, 1994.
  • The opportunities and advantages of using Bayesian statistics in clinical trials, http://www.tesella.com.
  • D. Gamerman, Markov Chain Monte Carlo: Stochastic simulation for Bayesian inference, Chapman and Hall, 1997.
  • B.P. Carlin, T.A. Louis, Bayesian methods for data analysis, CRC Press, 2008.
  • A. Gelman, D.B. Rubin, Inference from iterative simulation using multiple sequences (with discussion), Statistical Science, 7 (1992) 457.
  • S. Brooks, P. Giudici, MCMC convergence assessment via two way ANOVA, J. Computational and Graphical Statistics, 9 (2000) 266.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Turhan Menteş Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 39 Sayı: 1

Kaynak Göster

APA Menteş, T. (2011). Use of Bayesian Approach in Chemistry. Hacettepe Journal of Biology and Chemistry, 39(1), 19-22.
AMA Menteş T. Use of Bayesian Approach in Chemistry. HJBC. Ocak 2011;39(1):19-22.
Chicago Menteş, Turhan. “Use of Bayesian Approach in Chemistry”. Hacettepe Journal of Biology and Chemistry 39, sy. 1 (Ocak 2011): 19-22.
EndNote Menteş T (01 Ocak 2011) Use of Bayesian Approach in Chemistry. Hacettepe Journal of Biology and Chemistry 39 1 19–22.
IEEE T. Menteş, “Use of Bayesian Approach in Chemistry”, HJBC, c. 39, sy. 1, ss. 19–22, 2011.
ISNAD Menteş, Turhan. “Use of Bayesian Approach in Chemistry”. Hacettepe Journal of Biology and Chemistry 39/1 (Ocak 2011), 19-22.
JAMA Menteş T. Use of Bayesian Approach in Chemistry. HJBC. 2011;39:19–22.
MLA Menteş, Turhan. “Use of Bayesian Approach in Chemistry”. Hacettepe Journal of Biology and Chemistry, c. 39, sy. 1, 2011, ss. 19-22.
Vancouver Menteş T. Use of Bayesian Approach in Chemistry. HJBC. 2011;39(1):19-22.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc