BibTex RIS Kaynak Göster

Hesperidin-dsDNA Interaction Based on Electrochemically Reduced Graphene Oxide and Poly- 2,6-Pyridinedicarboxylic Acid Modified Glassy Carbon Electrode

Yıl 2016, Cilt: 44 Sayı: 4, 487 - 497, 01.11.2016

Öz

In this work, electrochemically reduced graphene oxide ERGO was deposited on a glassy carbon electrode GCE and poly 2,6-pyridinedicarboxylic acid P PDCA as a second layer was electrosynthesized on ERGO modified GCE and then, the prepared electrode was used to immobilize dsDNA. Electrochemical behaviour of GCE/ERGO/P PDCA was investigated by using cyclic voltammetry CV and compared with those of the bare GCE. Hesperidin HDN , a promising anticancer agent, can be detected using GCE/ERGO/P PDCA /dsDNA bio- sensor using the differential pulse voltammetry DPV . The decrease in the guanine oxidation peak current at +0.77 V was used as an indicator for the interaction in 0.5 M ABS pH 4.8 containing 0.02 M NaCl. The experi- mental parameters such as dsDNA concentration, HDN concentration, dsDNA adsorption time and interaction time were optimized. The guanine oxidation peak currents were linearly proportional to the concentrations of the HDN in the range of in the range of 0.82-82 μM and detection limit was found to be 0.24 μM. The rep- roducibility, repeatability, and applicability of the analysis to human serum samples were also examined. In order to obtain more information about the interaction between dsDNA and HDN, UV-vis spectrophotometry measurements were also performed. The novel DNA biosensor could serve for sensitive, accurate and rapid determination of the HDN.

Kaynakça

  • 1. C.S. Seo, J.-A. Lee, D. Jung, H.-Y. Lee, J.K. Lee, H. Ha, M.-Y. Lee, H.K. Shin, Simultaneous determination of liquiritin, hesperidin, and glycyrrhizin by HPLCphotodiode array detection and the anti-inflammatory effect of Pyungwi-san, Arch. Pharm. Res., 34 (2011) 203-210.
  • 2. L.M. Loscalzo, C. Wasowski, A.C. Paladini, M. Marder, Opioid receptors are involved in the sedative and antinociceptive effects of hesperidin as well as in its potentiation with benzodiazepines, Eur. J. Pharmacol., 580 (2008) 306-313.
  • 3. A. Balakrishnan, V.P. Menon, Effect of hesperidin on matrix metalloproteinases and antioxidant status during nicotine-induced toxicity, Toxicology, 238 (2007) 90-98.
  • 4. I. Saeidi, M.R. Hadjmohammadi, M. Peyrovi, M. Iranshahi, B. Barfi, A.B. Babaei, A.M. Dust, HPLC determination of hesperidin, diosmin and eriocitrin in Iranian lime juice using polyamide as an adsorbent for solid phase extraction, J. Pharmaceut. Biomed., 56 (2011) 419-422.
  • 5. T. Wu, Y. Guan, J. Ye, Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection, Food Chem., 100 (2007) 1573-1579.
  • 6. J. Hu, Q. Li, X. Tan, Study on the Adsorptive Behaviour of Hesperidin and Its Adsorptive Stripping Voltammetry, Anal. Lett., 29 (1996) 1779-1789.
  • 7. D. Sun, F. Wang, K. Wu, J. Chen, Y. Zhou, Electrochemical determination of hesperidin using mesoporous SiO2 modified electrode, Microchim. Acta, 167 (2009) 35-39.
  • 8. G. Aydoğdu, G. Günendi, D.K. Zeybek, B. Zeybek, Ş. Pekyardımcı, A novel electrochemical DNA biosensor based on poly-(5-amino-2-mercapto-1,3,4- thiadiazole) modified glassy carbon electrode for the determination of nitrofurantoin, Sensor. Actuat. B-Chem. 197 (2014) 211-219.
  • 9. F. Berti, S. Todros, D. Lakshmi, M.J. Whitcombe, I. Chianella, M. Ferroni, S.A. Piletsky, A.P.F. Turner, G. Marrazza, Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing, Biosens. Bioelectron., 26 (2010) 497-503.
  • 10. R.J. Geise, J.M. Adams, N.J. Barone, A.M. Yacynych, Electropolymerized films to prevent interferences and electrode fouling in biosensors, Biosens. Bioelectron., 6 (1991) 151-160.
  • 11. B.D. Malhotra, A. Chaubey, S.P. Singh, Prospects of conducting polymers in biosensors, Anal. Chim. Acta, 578 (2006) 59-74.
  • 12. T. Yang, W. Zhang, M. Du, K. Jiao, A PDDA/poly(2,6- pyridinedicarboxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene, Talanta, 75 (2008) 987-994.
  • 13. J. Yang, T. Yang, Y. Feng, K. Jiao, A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment, Anal. Biochem., 365 (2007) 24-30.
  • 14. Y. Fang, E. Wang, Electrochemical biosensors on platforms of graphene, Chem. Commun., 49(83) (2013) 9526-9539.
  • 15. Y. Fan, J.-H. Liu, C.-P. Yang, M. Yu, P. Liu, Graphene– polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol, Sensor. Actuat. B-Chem., 157 (2011) 669-674.
  • 16. N. Hui, S. Wang, H. Xie, S. Xu, S. Niu, X. Luo, Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4- ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing, Sensor. Actuat. B-Chem., 221 (2015) 606-613.
  • 17. T.A. Pham, J.S. Kim, J.S. Kim, Y.T. Jeong, One-step reduction of graphene oxide with l-glutathione, Colloids and Surfaces A., 384 (2011) 543-548.
  • 18. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39 (2010) 228-240.
  • 19. G.A. Tığ, B. Zeybek, Ş. Pekyardımcı, Electrochemical DNA biosensor based on poly(2,6-pyridinedicarboxylic acid) modified glassy carbon electrode for the determination of anticancer drug gemcitabine, Talanta, 154 (2016) 312-321.
  • 20. E. Pale ek, R. Kizek, L. Havran, S. Billova, M. Fojta, Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor, Anal. Chim. Acta, 469 (2002) 73-83.
  • 21. A. Troisi, G. Orlandi, The hole transfer in DNA: calculation of electron coupling between close bases, Chem. Phys. Lett., 344 (2001) 509-518.
  • 22. A. Erdem, B. Kosmider, R. Osiecka, E. Zyner, J. Ochocki, M. Ozsoz, Electrochemical genosensing of the interaction between the potential chemotherapeutic agent, cis-bis(3-aminoflavone)dichloroplatinum(II) and DNA in comparison with cis-DDP, J. Pharmaceut. Biomed., 38 (2005) 645-652.
  • 23. B. Dogan-Topal, B. Uslu, S.A. Ozkan, Voltammetric studies on the HIV-1 inhibitory drug Efavirenz: The interaction between dsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode, Biosens. Bioelectron., 24 (2009) 2358-2364.
  • 24. M.T. Carter, M. Rodriguez, A.J. Bard, Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2’-bipyridine, J. Am. Chem. Soc., 111 (1989) 8901-8911.
  • 25. A.A. Ensafi, B. Rezaei, M. Amini, E. Heydari-Bafrooei, A novel sensitive DNA–biosensor for detection of a carcinogen, Sudan II, using electrochemically treated pencil graphite electrode by voltammetric methods, Talanta, 88 (2012) 244-251.
  • 26. M. Rahban, A. Divsalar, A.A. Saboury, A. Golestani, Nanotoxicity and Spectroscopy Studies of Silver Nanoparticle: Calf Thymus DNA and K562 as Targets, J. Phy. Chem-US., C 114 (2010) 5798-5803.
  • 27. M. Sirajuddin, S. Ali, A. Badshah, Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry, J. Photoch. Photobio. B., 124 (2013) 1-19.
  • 28. F. Cui, R. Huo, G. Hui, X. Lv, J. Jin, G. Zhang, W. Xing, Study on the interaction between aglycon of daunorubicin and calf thymus DNA by spectroscopy, J. Mol. Struct., 1001 (2011) 104-110.
  • 29. S. Nafisi, A.A. Saboury, N. Keramat, J.-F. Neault, H.-A. Tajmir-Riahi, Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue, J. Mol. Struct., 827 (2007) 35- 43.
  • 30. J.H. Shi, J. Chen, J. Wang, Y.-Y. Zhu, Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking, Spectrochim. Acta A., 136. (2015) 443-450.
  • 31. L. Strekowski, B. Wilson, Noncovalent interactions with DNA: An overview, Mutat. Res-Fund. Mol., 623 (2007) 3-13.

Elektrokimyasal Olarak İndirgenmiş Grafen Oksit ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot ile Hesperidin-Dsdna Tayini

Yıl 2016, Cilt: 44 Sayı: 4, 487 - 497, 01.11.2016

Öz

Bu çalışmada, camsı karbon elektrot GCE yüzeyi elektrokimyasal olarak indirgenmiş grafen oksit ERGO ile kaplandı ve poli 2,6-piridindikarboksilik asit P PDCA ikinci bir tabaka olarak ERGO modifiye GCE yüzeyinde biriktirildi. Hazırlanan elektrot dsDNA’yı immobilize etmek için kullanıldı. GCE/ERGO/P PDCA elektrodunun elektrokimyasal davranışı dönüşümlü voltametri CV yöntemi ile incelendi ve sonuçlar yalın GCE’den elde edilen değerler ile karşılaştırıldı. Ümit verici bir antikanser ajanı olarak kullanılan hesperidin HDN , GCE/ERGO/P PDCA /dsDNA biyosensörü kullanılarak diferansiyel puls voltametrisi DPV tekniği ile tayin edildi. +0.77 V’daki guanin yükseltgenme pik akımındaki azalma 0.02 M NaCl içeren 0.5 M ABS pH 4.8 ’deki etkileşim için bir indikatör olarak kullanıldı. dsDNA konsantrayonu, HDN konsantrasyonu, dsDNA adsorpsiyon süresi ve etkileşim süresi gibi deneysel parametreler optimize edildi. Guanin yükseltgenme pik akımlarının 0.82-82 µM HDN konsantrasyon aralığında doğrusal olarak değiştiği bulundu ve gözlenebilme sınırı 0.24 µM olarak hesaplandı. Tekrar üretilebilirlik, tekrarlanabilirlik ve analizin insan serum örneklerine uygulanabilirliği incelendi. dsDNA ile HDN arasındaki etkileşim hakkında daha çok bilgi sağlamak amacıyla UVgörünür bölge spektrofotometri ölçümleri de alındı. Hazırlanan yeni dsDNA biyosensörünün hassas, doğru ve hızlı bir şekilde HDN tayini yapabildiği sonucuna varıldı

Kaynakça

  • 1. C.S. Seo, J.-A. Lee, D. Jung, H.-Y. Lee, J.K. Lee, H. Ha, M.-Y. Lee, H.K. Shin, Simultaneous determination of liquiritin, hesperidin, and glycyrrhizin by HPLCphotodiode array detection and the anti-inflammatory effect of Pyungwi-san, Arch. Pharm. Res., 34 (2011) 203-210.
  • 2. L.M. Loscalzo, C. Wasowski, A.C. Paladini, M. Marder, Opioid receptors are involved in the sedative and antinociceptive effects of hesperidin as well as in its potentiation with benzodiazepines, Eur. J. Pharmacol., 580 (2008) 306-313.
  • 3. A. Balakrishnan, V.P. Menon, Effect of hesperidin on matrix metalloproteinases and antioxidant status during nicotine-induced toxicity, Toxicology, 238 (2007) 90-98.
  • 4. I. Saeidi, M.R. Hadjmohammadi, M. Peyrovi, M. Iranshahi, B. Barfi, A.B. Babaei, A.M. Dust, HPLC determination of hesperidin, diosmin and eriocitrin in Iranian lime juice using polyamide as an adsorbent for solid phase extraction, J. Pharmaceut. Biomed., 56 (2011) 419-422.
  • 5. T. Wu, Y. Guan, J. Ye, Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection, Food Chem., 100 (2007) 1573-1579.
  • 6. J. Hu, Q. Li, X. Tan, Study on the Adsorptive Behaviour of Hesperidin and Its Adsorptive Stripping Voltammetry, Anal. Lett., 29 (1996) 1779-1789.
  • 7. D. Sun, F. Wang, K. Wu, J. Chen, Y. Zhou, Electrochemical determination of hesperidin using mesoporous SiO2 modified electrode, Microchim. Acta, 167 (2009) 35-39.
  • 8. G. Aydoğdu, G. Günendi, D.K. Zeybek, B. Zeybek, Ş. Pekyardımcı, A novel electrochemical DNA biosensor based on poly-(5-amino-2-mercapto-1,3,4- thiadiazole) modified glassy carbon electrode for the determination of nitrofurantoin, Sensor. Actuat. B-Chem. 197 (2014) 211-219.
  • 9. F. Berti, S. Todros, D. Lakshmi, M.J. Whitcombe, I. Chianella, M. Ferroni, S.A. Piletsky, A.P.F. Turner, G. Marrazza, Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing, Biosens. Bioelectron., 26 (2010) 497-503.
  • 10. R.J. Geise, J.M. Adams, N.J. Barone, A.M. Yacynych, Electropolymerized films to prevent interferences and electrode fouling in biosensors, Biosens. Bioelectron., 6 (1991) 151-160.
  • 11. B.D. Malhotra, A. Chaubey, S.P. Singh, Prospects of conducting polymers in biosensors, Anal. Chim. Acta, 578 (2006) 59-74.
  • 12. T. Yang, W. Zhang, M. Du, K. Jiao, A PDDA/poly(2,6- pyridinedicarboxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene, Talanta, 75 (2008) 987-994.
  • 13. J. Yang, T. Yang, Y. Feng, K. Jiao, A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment, Anal. Biochem., 365 (2007) 24-30.
  • 14. Y. Fang, E. Wang, Electrochemical biosensors on platforms of graphene, Chem. Commun., 49(83) (2013) 9526-9539.
  • 15. Y. Fan, J.-H. Liu, C.-P. Yang, M. Yu, P. Liu, Graphene– polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol, Sensor. Actuat. B-Chem., 157 (2011) 669-674.
  • 16. N. Hui, S. Wang, H. Xie, S. Xu, S. Niu, X. Luo, Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4- ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing, Sensor. Actuat. B-Chem., 221 (2015) 606-613.
  • 17. T.A. Pham, J.S. Kim, J.S. Kim, Y.T. Jeong, One-step reduction of graphene oxide with l-glutathione, Colloids and Surfaces A., 384 (2011) 543-548.
  • 18. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39 (2010) 228-240.
  • 19. G.A. Tığ, B. Zeybek, Ş. Pekyardımcı, Electrochemical DNA biosensor based on poly(2,6-pyridinedicarboxylic acid) modified glassy carbon electrode for the determination of anticancer drug gemcitabine, Talanta, 154 (2016) 312-321.
  • 20. E. Pale ek, R. Kizek, L. Havran, S. Billova, M. Fojta, Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor, Anal. Chim. Acta, 469 (2002) 73-83.
  • 21. A. Troisi, G. Orlandi, The hole transfer in DNA: calculation of electron coupling between close bases, Chem. Phys. Lett., 344 (2001) 509-518.
  • 22. A. Erdem, B. Kosmider, R. Osiecka, E. Zyner, J. Ochocki, M. Ozsoz, Electrochemical genosensing of the interaction between the potential chemotherapeutic agent, cis-bis(3-aminoflavone)dichloroplatinum(II) and DNA in comparison with cis-DDP, J. Pharmaceut. Biomed., 38 (2005) 645-652.
  • 23. B. Dogan-Topal, B. Uslu, S.A. Ozkan, Voltammetric studies on the HIV-1 inhibitory drug Efavirenz: The interaction between dsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode, Biosens. Bioelectron., 24 (2009) 2358-2364.
  • 24. M.T. Carter, M. Rodriguez, A.J. Bard, Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2’-bipyridine, J. Am. Chem. Soc., 111 (1989) 8901-8911.
  • 25. A.A. Ensafi, B. Rezaei, M. Amini, E. Heydari-Bafrooei, A novel sensitive DNA–biosensor for detection of a carcinogen, Sudan II, using electrochemically treated pencil graphite electrode by voltammetric methods, Talanta, 88 (2012) 244-251.
  • 26. M. Rahban, A. Divsalar, A.A. Saboury, A. Golestani, Nanotoxicity and Spectroscopy Studies of Silver Nanoparticle: Calf Thymus DNA and K562 as Targets, J. Phy. Chem-US., C 114 (2010) 5798-5803.
  • 27. M. Sirajuddin, S. Ali, A. Badshah, Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry, J. Photoch. Photobio. B., 124 (2013) 1-19.
  • 28. F. Cui, R. Huo, G. Hui, X. Lv, J. Jin, G. Zhang, W. Xing, Study on the interaction between aglycon of daunorubicin and calf thymus DNA by spectroscopy, J. Mol. Struct., 1001 (2011) 104-110.
  • 29. S. Nafisi, A.A. Saboury, N. Keramat, J.-F. Neault, H.-A. Tajmir-Riahi, Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue, J. Mol. Struct., 827 (2007) 35- 43.
  • 30. J.H. Shi, J. Chen, J. Wang, Y.-Y. Zhu, Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking, Spectrochim. Acta A., 136. (2015) 443-450.
  • 31. L. Strekowski, B. Wilson, Noncovalent interactions with DNA: An overview, Mutat. Res-Fund. Mol., 623 (2007) 3-13.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Gözde Aydoğdu Tığ Bu kişi benim

Ecem Özlem Bolat Bu kişi benim

Bülent Zeybek Bu kişi benim

Şule Pekyardımcı Bu kişi benim

Yayımlanma Tarihi 1 Kasım 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 44 Sayı: 4

Kaynak Göster

APA Aydoğdu Tığ, G., Bolat, E. Ö., Zeybek, B., Pekyardımcı, Ş. (2016). Elektrokimyasal Olarak İndirgenmiş Grafen Oksit ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot ile Hesperidin-Dsdna Tayini. Hacettepe Journal of Biology and Chemistry, 44(4), 487-497.
AMA Aydoğdu Tığ G, Bolat EÖ, Zeybek B, Pekyardımcı Ş. Elektrokimyasal Olarak İndirgenmiş Grafen Oksit ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot ile Hesperidin-Dsdna Tayini. HJBC. Kasım 2016;44(4):487-497.
Chicago Aydoğdu Tığ, Gözde, Ecem Özlem Bolat, Bülent Zeybek, ve Şule Pekyardımcı. “Elektrokimyasal Olarak İndirgenmiş Grafen Oksit Ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot Ile Hesperidin-Dsdna Tayini”. Hacettepe Journal of Biology and Chemistry 44, sy. 4 (Kasım 2016): 487-97.
EndNote Aydoğdu Tığ G, Bolat EÖ, Zeybek B, Pekyardımcı Ş (01 Kasım 2016) Elektrokimyasal Olarak İndirgenmiş Grafen Oksit ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot ile Hesperidin-Dsdna Tayini. Hacettepe Journal of Biology and Chemistry 44 4 487–497.
IEEE G. Aydoğdu Tığ, E. Ö. Bolat, B. Zeybek, ve Ş. Pekyardımcı, “Elektrokimyasal Olarak İndirgenmiş Grafen Oksit ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot ile Hesperidin-Dsdna Tayini”, HJBC, c. 44, sy. 4, ss. 487–497, 2016.
ISNAD Aydoğdu Tığ, Gözde vd. “Elektrokimyasal Olarak İndirgenmiş Grafen Oksit Ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot Ile Hesperidin-Dsdna Tayini”. Hacettepe Journal of Biology and Chemistry 44/4 (Kasım 2016), 487-497.
JAMA Aydoğdu Tığ G, Bolat EÖ, Zeybek B, Pekyardımcı Ş. Elektrokimyasal Olarak İndirgenmiş Grafen Oksit ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot ile Hesperidin-Dsdna Tayini. HJBC. 2016;44:487–497.
MLA Aydoğdu Tığ, Gözde vd. “Elektrokimyasal Olarak İndirgenmiş Grafen Oksit Ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot Ile Hesperidin-Dsdna Tayini”. Hacettepe Journal of Biology and Chemistry, c. 44, sy. 4, 2016, ss. 487-9.
Vancouver Aydoğdu Tığ G, Bolat EÖ, Zeybek B, Pekyardımcı Ş. Elektrokimyasal Olarak İndirgenmiş Grafen Oksit ve Poli 2,6- Piridindikarboksilik Asit Modifiye Camsı Karbon Elektrot ile Hesperidin-Dsdna Tayini. HJBC. 2016;44(4):487-9.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc