Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite
Year 2024, Volume: 52 Issue: 2, 63 - 75, 01.04.2024
https://doi.org/10.15671/hjbc.1372446

Abstract

References

  • A. Pollap, K. Baran, N. Kuszewska, J. Kochana, Electrochemical sensing of ciprofloxacin and paracetamol in environmental water using titanium sol based sensor, J. Electroanal. Chem., 878 (2020) 114574.
  • K. Annadurai, V. Sudha, G. Murugadoss, R. Thangamuthu, Electrochemical sensor based on hydrothermally prepared nickel oxide for the determination of 4-acetaminophen in paracetamol tablets and human blood serum samples, J. Alloys Compd., 852 (2021) 156911.
  • C.S. Kushwaha, S.K. Shukla, Electrochemical sensing of paracetamol using iron oxide encapsulated in chitosan-grafted-polyaniline, ACS Appl. Polym. Mater., 2 (2020) 2252-2259.
  • B. Tsvetkova, I. Pencheva, A. Zlatkov, P. Peikov, Simultaneous high-performance liquid chromatography determination of paracetamol and ascorbic acid in tablet dosage forms, Afr. J. Pharm. Pharm., 6 (2012) 1332-1336.
  • R.R. Cunha, M.M.A.C. Ribeiro, R.A.A. Muñoz, E.M. Richter, Fast determination of codeine, orphenadrine, promethazine, scopolamine, tramadol, and paracetamol in pharmaceutical formulations by capillary electrophoresis, J. Sep. Sci., 40 (2017) 1815-1823.
  • A.M. El-Kosasy, O. Abdel-Aziz, N. Magdy, N.M. El Zahar, Spectrophotometric and chemometric methods for determination of imipenem, ciprofloxacin hydrochloride, dexamethasone sodium phosphate, paracetamol and cilastatin sodium in human urine, Spectrochim. Acta A Mol. Biomol. Spectrosc., 157 (2016) 26-33.
  • M. Kumar, B.E.K. Swamy, C. Sravanthi, C. M. P. Kumar, NiFe2O4 nanoparticle modified electrochemical sensor for the voltammetric study of folic acid and paracetamol, Mater. Chem. Phys., 284 (2022) 126087.
  • V. Sanko, A. Şenocak, S.O. Tümay, T. Çamurcu, E. Demirbas, Core‐shell hierarchical enzymatic biosensor based on hyaluronic acid capped copper ferrite nanoparticles for determination of endocrine‐disrupting bisphenol A, Electroanalysis, 34 (2022) 561-572.
  • V. Sanko, A. Şenocak, S.O. Tümay, E. Demirbas, A novel comparative study for electrochemical urea biosensor design: Effect of different ferrite nanoparticles (MFe2O4, M: Cu, Co, Ni, Zn) in urease immobilized composite system, Bioelectrochemistry, 149 (2023) 108324.
  • A. Şenocak, S.O. Tümay, E. Sarı, V. Şanko, M. Durmuş, E. Demirbas, The simultaneously voltammetric determination of spinosad and chlorantraniliprole pesticides by carbazole-ferrocene functionalized carbon nanotube architecture, J. Electrochem. Soc., 168 (2021) 087513.
  • S.O. Tümay, V. Sanko, A. Şenocak, E. Demirbas, A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg2+ ions in environmental samples, New J Chem, 45 (2021) 14495-14507.
  • M. Kumar, B.E.K. Swamy, C. Sravanthi, C.M.P. Kumar, G.K. Jayaprakash, NiFe2O4 nanoparticle modified electrochemical sensor for the voltammetric study of folic acid and paracetamol, Mater. Chem. Phys., 284 (2022) 126087.
  • V. Sanko, A. Şenocak, S.O. Tümay, Y. Orooji, E. Demirbas, A. Khataee, An electrochemical sensor for detection of trace-level endocrine disruptor bisphenol A using Mo2Ti2AlC3 MAX phase/MWCNT composite modified electrode, Environ. Res., 212 (2022) 113071.
  • M.A. Güngör, H.K. Kaya, F. Kuralay, WS2 integrated PEDOT: PSS interface as a sensitive and selective voltammetric epirubicin detection platform and a functional actuator, Surf. Interfaces, 30 (2022) 101839.
  • Q. Huang, X. Lin, L. Tong, Q.X. Tong, Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells, ACS Sustain. Chem. Eng., 8 (2020) 1644-1650.
  • B. Wu, S. Yeasmin, Y. Liu, L.J. Cheng, Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes, Sens. Actuators B Chem., 354 (2022) 131216.
  • A. Şenocak, Simple and sensitive detection of quercetin antioxidant by TEOS coated magnetic Fe2O3 core-shell, J. Turk. Chem. Soc. A: Chem., 7 (2020) 525-534.
  • Z. Xu, H. Teng, J. Song, F. Gao, L. Ma, G. Xu, X. Luo, A nanocomposite consisting of MnO2 nanoflowers and the conducting polymer PEDOT for highly sensitive amperometric detection of paracetamol, Microchim. Acta, 186 (2019) 1-8.
  • F. Xie, M. Yang, M. Jiang, X.J. Huang, W.Q. Liu, P.H. Xie, Carbon-based nanomaterials-a promising electrochemical sensor toward persistent toxic substance, TrAC, Trends Anal. Chem., 119, 2019 115624.
  • 20. R. Jia, R. Zhang, L. Yu, X. Kong, S. Bao, M. Tu, X. Liu, B. Xu, Engineering a hierarchical carbon supported magnetite nanoparticles composite from metal organic framework and graphene oxide for lithium-ion storage, J. Colloid Interface Sci., 630 (2023) 86-98.
  • W. Anindya, W.T. Wahyuni, M. Rafi, B.R. Putra, Electrochemical sensor based on graphene oxide/PEDOT:PSS composite modified glassy carbon electrode for environmental nitrite detection, Int. J. Electrochem. Sci., 18 (2023) 100034.
  • J. Lee, H.K. Na, S. Lee, W.K. Kim, Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA, Microchim. Acta, 189 (2022) 35.
  • A. Joy, G. Unnikrishnan, M. Megha, M. Haris, J. Thomas, E. Kolanthai, S. Muthuswamy, Design of biocompatible polycaprolactone-based nanocomposite loaded with graphene oxide/strontium nanohybrid for biomedical applications, Appl. Nanosci., 13 (2023). 4471-4484.
  • S.J. Saleem, M. Guler, Electroanalytical determination of paracetamol using Pd nanoparticles deposited on carboxylated graphene oxide modified glassy carbon electrode, Electroanalysis, 31 (2019) 2187-2198.
  • R. Porada, N. Wenninger, C. Bernhart, K. Fendrych, J. Kochana, B. Bas, K. Kalcher, A. Ortner, Targeted modification of the carbon paste electrode by natural zeolite and graphene oxide for the enhanced analysis of paracetamol, Microchem. J., 187 (2023) 108455.
  • N. Dou, J. Qu, Simultaneous detection of 4-aminophenol and paracetamol using a glassy carbon electrode modified with graphene oxide, TiO2 and gold nanoparticles, J. Electrochem. Soc., 167 (2020) 066512.
  • L. Yang, B. Zhang, B. Xu, F. Zhao, B. Zeng, Ionic liquid functionalized 3D graphene-carbon nanotubes-AuPd nanoparticles-molecularly imprinted copolymer based paracetamol electrochemical sensor: Preparation, characterization and application, Talanta, 224 (2021) 121845.
  • T. Kokulnathan, T.J. Wang, E.A. Kumar, N. Duraisamy, A.T. Lee, An electrochemical platform based on yttrium oxide/boron nitride nanocomposite for the detection of dopamine, Sens. Actuators B Chem., 349 (2021) 130787.
  • W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.
  • M. Hajizadeh-Oghaz, R.S. Razavi, M. Barekat, M. Naderi, S. Malekzadeh, M. Rezazadeh, Synthesis and characterization of Y2O3 nanoparticles by sol-gel process for transparent ceramics applications, J Solgel Sci Technol, 78 (2016) 682-691.
  • I.O. Faniyi, O. Fasakin, B. Olofnjana, A.S. Adekunle, T.V. Oluwasusi, M.A. Eleruja, E.O.B. Ajayi, The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches, SN Appl. Sci., 1 (2019) 1-7.
  • H. Tripathi, S. Kumar, S. Kumari, S. Bhardwaj, A. Gupta, J.D. Sharma, Effect of sintering additives on Y2O3 ceramic: Synthesis, structural, morphological, and optical properties investigations, Mater. Today: Proc., 2023.
  • K. Jayasankar, A. Pandey, B.K. Mishra, S. Das, Evaluation of microstructural parameters of nanocrystalline Y2O3 by X-ray diffraction peak broadening analysis, Mater. Chem. Phys., 171 (2016) 195-200.
  • W. Gul, H. Alrobei, Effect of graphene oxide nanoparticles on the physical and mechanical properties of medium density fiberboard, Polymers, 13, (2021) 1818.
  • M.M. Shanbhag, N.P. Shetti, S.S. Kalanur, B.G. Pollet, K.P. Upadhyaya, N.H. Ayachit, T.M. Aminabhavi, Hf-doped tungsten oxide nanorods as electrode materials for electrochemical detection of paracetamol and salbutamol, ACS Appl. Nano Mater., 5 (2022) 1263-1275.
  • B.R. Adhikari, M. Govindhan, A. Chen, Sensitive detection of acetaminophen with graphene-based electrochemical sensor, Electrochim. Acta, 162 (2015) 198-204.
  • Z.Y. Li, D.Y. Gao, Z.Y. Wu, S. Zhao, Simultaneous electrochemical detection of levodapa, paracetamol and l-tyrosine based on multi-walled carbon nanotubes, RSC Adv., 10 (2020) 14218-14224.
  • G.V. Prasad, V. Vinothkumar, S.J. Jang, D.E. Oh, T.H. Kim, Multi-walled carbon nanotube/graphene oxide/poly (threonine) composite electrode for boosting electrochemical detection of paracetamol in biological samples, Microchem. J., 184 (2023) 108205.
  • N. Changsan, S. Chairam, P. Jarujamrus, M. Amatatongchai, Sensitive electrochemical sensor based on gold nanoparticles assembled ferrocene-functionalised graphene oxide modified glassy carbon electrode for simultaneous determination of dopamine and acetaminophen, ANSN, 13 (2022) 015012.
  • C. Luhana, P. Mashazi, Simultaneous detection of dopamine and paracetamol on electroreduced graphene oxide-cobalt phthalocyanine polymer nanocomposite electrode, Electrocatalysis, 14 (2023) 406-417.
  • S. Wang, F. Chen, Z. Li, H. Tao, L. Qu, J. Li, M. Zhu, Q. Zha, A graphene oxide/Zn-metal organic framework electrochemical sensor for acetaminophen detection, Surf. Interfaces., 39 (2023) 102910.
  • L. Shen, J. Dong, B. Wen, X. Wen, J. Li, Facile Synthesis of hollow Fe3O4-rGO nanocomposites for the electrochemical detection of acetaminophen, Nanomaterials, 13 (2023) 707.
  • C. Martínez-Sánchez, F. Montiel-González, V. Rodríguez-González, Electrochemical sensing of acetaminophen using a practical carbon paste electrode modified with a graphene oxide-Y2O3 nanocomposite, J Taiwan Inst Chem Eng, 96 (2019) 382-389.
  • H. Dejmkova, J. Barek, J. Zima, Determination of aminonitrophenols in hair dyes using a carbon paste electrode and a boron-doped diamond film electrode-a comparative study, Int. J. Electrochem. Sci., 6 (2011) 3550-3563.
  • H. Ji, L. Zhu, D. Liang, Y. Liu, L. Cai, S. Zhang, S. Liu, Use of a 12-molybdovanadate (V) modified ionic liquid carbon paste electrode as a bifunctional electrochemical sensor, Electrochim. Acta, 54 (2009) 7429-7434.
  • B. Devadas, H.T. Yeh, S.M. Chen, S. Piraman, Electrochemical preparation of yttrium hexacyanoferrate on reduced graphene oxide and its application to analgesic drug sensor, Electroanalysis, 26 (2014) 1712-1720.
  • S. Gürsoy, F. Kuralay, Graphene supported poly (3-aminophenylboronic acid) surface via constant potential electrolysis for facile and sensitive paracetamol determination, Colloids Surf., 633 (2022) 127846.
  • J.C. Bhangoji, S.S. Kahandal, R.S. Patil, T.L. Lambat, S.I. Khan, G. Wadhava, S.H. Mahmood, S.S. Shendage, One Pot Synthesis of CuO-CuFe2O4@rGO Nanostructure with synergistic effect for efficient electrochemical sensing application of paracetamol, ECS Adv., 2 (2023) 026503.

Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol

Year 2024, Volume: 52 Issue: 2, 63 - 75, 01.04.2024
https://doi.org/10.15671/hjbc.1372446

Abstract

In this study, graphene oxide (GO) was synthesized by the Hummers method starting from graphite. Also, the sol-gel method synthesized yttrium oxide (YO) and was characterized by FTIR, XRD, SEM, and TEM techniques. The sensor performance of the modified electrode against the paracetamol analyte was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As a result of the optimized voltammetric methods calculated the linear working range was 0.25-10.0 µM and the LOD value was 19.0 nM. With the DPV method, advanced analytical parameters such as stability, reproducibility, and selectivity were studied. Moreover, the performance of the new sensor to detect paracetamol in tablet real samples was examined.

Thanks

The authors especially thank Assoc. Prof. Dr. Ahmet Şenocak and Assoc. Prof. Dr. Süreyya Oğuz Tümay for their valuable contributions to this study.

References

  • A. Pollap, K. Baran, N. Kuszewska, J. Kochana, Electrochemical sensing of ciprofloxacin and paracetamol in environmental water using titanium sol based sensor, J. Electroanal. Chem., 878 (2020) 114574.
  • K. Annadurai, V. Sudha, G. Murugadoss, R. Thangamuthu, Electrochemical sensor based on hydrothermally prepared nickel oxide for the determination of 4-acetaminophen in paracetamol tablets and human blood serum samples, J. Alloys Compd., 852 (2021) 156911.
  • C.S. Kushwaha, S.K. Shukla, Electrochemical sensing of paracetamol using iron oxide encapsulated in chitosan-grafted-polyaniline, ACS Appl. Polym. Mater., 2 (2020) 2252-2259.
  • B. Tsvetkova, I. Pencheva, A. Zlatkov, P. Peikov, Simultaneous high-performance liquid chromatography determination of paracetamol and ascorbic acid in tablet dosage forms, Afr. J. Pharm. Pharm., 6 (2012) 1332-1336.
  • R.R. Cunha, M.M.A.C. Ribeiro, R.A.A. Muñoz, E.M. Richter, Fast determination of codeine, orphenadrine, promethazine, scopolamine, tramadol, and paracetamol in pharmaceutical formulations by capillary electrophoresis, J. Sep. Sci., 40 (2017) 1815-1823.
  • A.M. El-Kosasy, O. Abdel-Aziz, N. Magdy, N.M. El Zahar, Spectrophotometric and chemometric methods for determination of imipenem, ciprofloxacin hydrochloride, dexamethasone sodium phosphate, paracetamol and cilastatin sodium in human urine, Spectrochim. Acta A Mol. Biomol. Spectrosc., 157 (2016) 26-33.
  • M. Kumar, B.E.K. Swamy, C. Sravanthi, C. M. P. Kumar, NiFe2O4 nanoparticle modified electrochemical sensor for the voltammetric study of folic acid and paracetamol, Mater. Chem. Phys., 284 (2022) 126087.
  • V. Sanko, A. Şenocak, S.O. Tümay, T. Çamurcu, E. Demirbas, Core‐shell hierarchical enzymatic biosensor based on hyaluronic acid capped copper ferrite nanoparticles for determination of endocrine‐disrupting bisphenol A, Electroanalysis, 34 (2022) 561-572.
  • V. Sanko, A. Şenocak, S.O. Tümay, E. Demirbas, A novel comparative study for electrochemical urea biosensor design: Effect of different ferrite nanoparticles (MFe2O4, M: Cu, Co, Ni, Zn) in urease immobilized composite system, Bioelectrochemistry, 149 (2023) 108324.
  • A. Şenocak, S.O. Tümay, E. Sarı, V. Şanko, M. Durmuş, E. Demirbas, The simultaneously voltammetric determination of spinosad and chlorantraniliprole pesticides by carbazole-ferrocene functionalized carbon nanotube architecture, J. Electrochem. Soc., 168 (2021) 087513.
  • S.O. Tümay, V. Sanko, A. Şenocak, E. Demirbas, A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg2+ ions in environmental samples, New J Chem, 45 (2021) 14495-14507.
  • M. Kumar, B.E.K. Swamy, C. Sravanthi, C.M.P. Kumar, G.K. Jayaprakash, NiFe2O4 nanoparticle modified electrochemical sensor for the voltammetric study of folic acid and paracetamol, Mater. Chem. Phys., 284 (2022) 126087.
  • V. Sanko, A. Şenocak, S.O. Tümay, Y. Orooji, E. Demirbas, A. Khataee, An electrochemical sensor for detection of trace-level endocrine disruptor bisphenol A using Mo2Ti2AlC3 MAX phase/MWCNT composite modified electrode, Environ. Res., 212 (2022) 113071.
  • M.A. Güngör, H.K. Kaya, F. Kuralay, WS2 integrated PEDOT: PSS interface as a sensitive and selective voltammetric epirubicin detection platform and a functional actuator, Surf. Interfaces, 30 (2022) 101839.
  • Q. Huang, X. Lin, L. Tong, Q.X. Tong, Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells, ACS Sustain. Chem. Eng., 8 (2020) 1644-1650.
  • B. Wu, S. Yeasmin, Y. Liu, L.J. Cheng, Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes, Sens. Actuators B Chem., 354 (2022) 131216.
  • A. Şenocak, Simple and sensitive detection of quercetin antioxidant by TEOS coated magnetic Fe2O3 core-shell, J. Turk. Chem. Soc. A: Chem., 7 (2020) 525-534.
  • Z. Xu, H. Teng, J. Song, F. Gao, L. Ma, G. Xu, X. Luo, A nanocomposite consisting of MnO2 nanoflowers and the conducting polymer PEDOT for highly sensitive amperometric detection of paracetamol, Microchim. Acta, 186 (2019) 1-8.
  • F. Xie, M. Yang, M. Jiang, X.J. Huang, W.Q. Liu, P.H. Xie, Carbon-based nanomaterials-a promising electrochemical sensor toward persistent toxic substance, TrAC, Trends Anal. Chem., 119, 2019 115624.
  • 20. R. Jia, R. Zhang, L. Yu, X. Kong, S. Bao, M. Tu, X. Liu, B. Xu, Engineering a hierarchical carbon supported magnetite nanoparticles composite from metal organic framework and graphene oxide for lithium-ion storage, J. Colloid Interface Sci., 630 (2023) 86-98.
  • W. Anindya, W.T. Wahyuni, M. Rafi, B.R. Putra, Electrochemical sensor based on graphene oxide/PEDOT:PSS composite modified glassy carbon electrode for environmental nitrite detection, Int. J. Electrochem. Sci., 18 (2023) 100034.
  • J. Lee, H.K. Na, S. Lee, W.K. Kim, Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA, Microchim. Acta, 189 (2022) 35.
  • A. Joy, G. Unnikrishnan, M. Megha, M. Haris, J. Thomas, E. Kolanthai, S. Muthuswamy, Design of biocompatible polycaprolactone-based nanocomposite loaded with graphene oxide/strontium nanohybrid for biomedical applications, Appl. Nanosci., 13 (2023). 4471-4484.
  • S.J. Saleem, M. Guler, Electroanalytical determination of paracetamol using Pd nanoparticles deposited on carboxylated graphene oxide modified glassy carbon electrode, Electroanalysis, 31 (2019) 2187-2198.
  • R. Porada, N. Wenninger, C. Bernhart, K. Fendrych, J. Kochana, B. Bas, K. Kalcher, A. Ortner, Targeted modification of the carbon paste electrode by natural zeolite and graphene oxide for the enhanced analysis of paracetamol, Microchem. J., 187 (2023) 108455.
  • N. Dou, J. Qu, Simultaneous detection of 4-aminophenol and paracetamol using a glassy carbon electrode modified with graphene oxide, TiO2 and gold nanoparticles, J. Electrochem. Soc., 167 (2020) 066512.
  • L. Yang, B. Zhang, B. Xu, F. Zhao, B. Zeng, Ionic liquid functionalized 3D graphene-carbon nanotubes-AuPd nanoparticles-molecularly imprinted copolymer based paracetamol electrochemical sensor: Preparation, characterization and application, Talanta, 224 (2021) 121845.
  • T. Kokulnathan, T.J. Wang, E.A. Kumar, N. Duraisamy, A.T. Lee, An electrochemical platform based on yttrium oxide/boron nitride nanocomposite for the detection of dopamine, Sens. Actuators B Chem., 349 (2021) 130787.
  • W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.
  • M. Hajizadeh-Oghaz, R.S. Razavi, M. Barekat, M. Naderi, S. Malekzadeh, M. Rezazadeh, Synthesis and characterization of Y2O3 nanoparticles by sol-gel process for transparent ceramics applications, J Solgel Sci Technol, 78 (2016) 682-691.
  • I.O. Faniyi, O. Fasakin, B. Olofnjana, A.S. Adekunle, T.V. Oluwasusi, M.A. Eleruja, E.O.B. Ajayi, The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches, SN Appl. Sci., 1 (2019) 1-7.
  • H. Tripathi, S. Kumar, S. Kumari, S. Bhardwaj, A. Gupta, J.D. Sharma, Effect of sintering additives on Y2O3 ceramic: Synthesis, structural, morphological, and optical properties investigations, Mater. Today: Proc., 2023.
  • K. Jayasankar, A. Pandey, B.K. Mishra, S. Das, Evaluation of microstructural parameters of nanocrystalline Y2O3 by X-ray diffraction peak broadening analysis, Mater. Chem. Phys., 171 (2016) 195-200.
  • W. Gul, H. Alrobei, Effect of graphene oxide nanoparticles on the physical and mechanical properties of medium density fiberboard, Polymers, 13, (2021) 1818.
  • M.M. Shanbhag, N.P. Shetti, S.S. Kalanur, B.G. Pollet, K.P. Upadhyaya, N.H. Ayachit, T.M. Aminabhavi, Hf-doped tungsten oxide nanorods as electrode materials for electrochemical detection of paracetamol and salbutamol, ACS Appl. Nano Mater., 5 (2022) 1263-1275.
  • B.R. Adhikari, M. Govindhan, A. Chen, Sensitive detection of acetaminophen with graphene-based electrochemical sensor, Electrochim. Acta, 162 (2015) 198-204.
  • Z.Y. Li, D.Y. Gao, Z.Y. Wu, S. Zhao, Simultaneous electrochemical detection of levodapa, paracetamol and l-tyrosine based on multi-walled carbon nanotubes, RSC Adv., 10 (2020) 14218-14224.
  • G.V. Prasad, V. Vinothkumar, S.J. Jang, D.E. Oh, T.H. Kim, Multi-walled carbon nanotube/graphene oxide/poly (threonine) composite electrode for boosting electrochemical detection of paracetamol in biological samples, Microchem. J., 184 (2023) 108205.
  • N. Changsan, S. Chairam, P. Jarujamrus, M. Amatatongchai, Sensitive electrochemical sensor based on gold nanoparticles assembled ferrocene-functionalised graphene oxide modified glassy carbon electrode for simultaneous determination of dopamine and acetaminophen, ANSN, 13 (2022) 015012.
  • C. Luhana, P. Mashazi, Simultaneous detection of dopamine and paracetamol on electroreduced graphene oxide-cobalt phthalocyanine polymer nanocomposite electrode, Electrocatalysis, 14 (2023) 406-417.
  • S. Wang, F. Chen, Z. Li, H. Tao, L. Qu, J. Li, M. Zhu, Q. Zha, A graphene oxide/Zn-metal organic framework electrochemical sensor for acetaminophen detection, Surf. Interfaces., 39 (2023) 102910.
  • L. Shen, J. Dong, B. Wen, X. Wen, J. Li, Facile Synthesis of hollow Fe3O4-rGO nanocomposites for the electrochemical detection of acetaminophen, Nanomaterials, 13 (2023) 707.
  • C. Martínez-Sánchez, F. Montiel-González, V. Rodríguez-González, Electrochemical sensing of acetaminophen using a practical carbon paste electrode modified with a graphene oxide-Y2O3 nanocomposite, J Taiwan Inst Chem Eng, 96 (2019) 382-389.
  • H. Dejmkova, J. Barek, J. Zima, Determination of aminonitrophenols in hair dyes using a carbon paste electrode and a boron-doped diamond film electrode-a comparative study, Int. J. Electrochem. Sci., 6 (2011) 3550-3563.
  • H. Ji, L. Zhu, D. Liang, Y. Liu, L. Cai, S. Zhang, S. Liu, Use of a 12-molybdovanadate (V) modified ionic liquid carbon paste electrode as a bifunctional electrochemical sensor, Electrochim. Acta, 54 (2009) 7429-7434.
  • B. Devadas, H.T. Yeh, S.M. Chen, S. Piraman, Electrochemical preparation of yttrium hexacyanoferrate on reduced graphene oxide and its application to analgesic drug sensor, Electroanalysis, 26 (2014) 1712-1720.
  • S. Gürsoy, F. Kuralay, Graphene supported poly (3-aminophenylboronic acid) surface via constant potential electrolysis for facile and sensitive paracetamol determination, Colloids Surf., 633 (2022) 127846.
  • J.C. Bhangoji, S.S. Kahandal, R.S. Patil, T.L. Lambat, S.I. Khan, G. Wadhava, S.H. Mahmood, S.S. Shendage, One Pot Synthesis of CuO-CuFe2O4@rGO Nanostructure with synergistic effect for efficient electrochemical sensing application of paracetamol, ECS Adv., 2 (2023) 026503.
There are 48 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Research Article
Authors

Vildan Şanko 0000-0003-0331-5967

İpek Ömeroğlu 0000-0002-7528-0911

Publication Date April 1, 2024
Acceptance Date November 22, 2023
Published in Issue Year 2024 Volume: 52 Issue: 2

Cite

APA Şanko, V., & Ömeroğlu, İ. (2024). Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol. Hacettepe Journal of Biology and Chemistry, 52(2), 63-75. https://doi.org/10.15671/hjbc.1372446
AMA Şanko V, Ömeroğlu İ. Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol. HJBC. April 2024;52(2):63-75. doi:10.15671/hjbc.1372446
Chicago Şanko, Vildan, and İpek Ömeroğlu. “Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol”. Hacettepe Journal of Biology and Chemistry 52, no. 2 (April 2024): 63-75. https://doi.org/10.15671/hjbc.1372446.
EndNote Şanko V, Ömeroğlu İ (April 1, 2024) Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol. Hacettepe Journal of Biology and Chemistry 52 2 63–75.
IEEE V. Şanko and İ. Ömeroğlu, “Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol”, HJBC, vol. 52, no. 2, pp. 63–75, 2024, doi: 10.15671/hjbc.1372446.
ISNAD Şanko, Vildan - Ömeroğlu, İpek. “Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol”. Hacettepe Journal of Biology and Chemistry 52/2 (April 2024), 63-75. https://doi.org/10.15671/hjbc.1372446.
JAMA Şanko V, Ömeroğlu İ. Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol. HJBC. 2024;52:63–75.
MLA Şanko, Vildan and İpek Ömeroğlu. “Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol”. Hacettepe Journal of Biology and Chemistry, vol. 52, no. 2, 2024, pp. 63-75, doi:10.15671/hjbc.1372446.
Vancouver Şanko V, Ömeroğlu İ. Layered Yttrium Oxide Reinforced Graphene Oxide Electrode Surface for Voltammetric Determination of Paracetamol. HJBC. 2024;52(2):63-75.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc