Araştırma Makalesi
BibTex RIS Kaynak Göster

Determining soil moisture with Sentinel-1 image

Yıl 2024, , 149 - 156, 01.11.2024
https://doi.org/10.9733/JGG.2024R0010.E

Öz

Soil moisture is vital for agricultural practices, climate change, erosion, and water management issues. Thus, monitoring and spatial distribution of soil moisture is also important. Nowadays, the usage of remote sensing, apart from traditional methods, for estimating soil moisture is rapidly increasing. In this context, Synthetic Aperture Radar images constitute one of the remote sensing tools. In this study, soil moisture was estimated using Sentinel-1 imaging in a 25-decar field. In situ measurements were carried out with a soil moisture meter in synchronization with the Sentinel-1 transition. As a result of the study, soil moisture was estimated with an empirical approach, using a model derived from in situ soil moisture measurement and Sentinel-1 backscatter data.

Proje Numarası

CUBAP M – 2023 – 845

Teşekkür

We want to thank CUBAP (Cumhuriyet University Scientific Research Projects) for M – 2023 – 845 numbered Project and their co-operation.

Kaynakça

  • Bajgiran, P. R., Berg, A. A., Champagne, C., & Omasa, K. (2013). Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS journal of photogrammetry and remote sensing, 83, 94-103.
  • Bazzi, H., Baghdadi, N., Nino, P., Napoli, R., Najem, S., Zribi, M., & Vaudour, E. (2024). Retrieving Soil Moisture from Sentinel-1: Limitations over Certain Crops and Sensitivity to the First Soil Thin Layer. Water, 16(1), 40.
  • Bormudoi, A., Nagai, M., Katiyar, V., Ichikawa, D., & Eguchi, T. (2023). Soil Moisture Change Detection with Sentinel-1 SAR Image for Slow Onsetting Disasters: An Investigative Study Using Index Based Method. Land, 12(2), 506.
  • El Hajj, M., Baghdadi, N., Bazzi, H., & Zribi, M. (2019). Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sensing, 11(1), 31.
  • Esch, S., Korres, W., Reichenau, T. G., & Schneider, K. (2018). Soil moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas. Journal of Applied Remote Sensing, 12(2), 022206-022206.
  • Filion, R., Bernier, M., Paniconi, C., Chokmani, K., & Talazac, M. (2014). Empirical modelling to estimate surface soil moisture at field scale in Sardinia, Italy: Comparison between optical and SAR data. In 2014 IEEE geoscience and remote sensing symposium, 3243-3246.
  • Geudtner, D., Torres, R., Snoeij, P., Davidson, M., & Rommen, B. (2014). Sentinel-1 system capabilities and applications. In 2014 IEEE geoscience and remote sensing symposium, 1457-1460.
  • Gorrab, A., Zribi, M., Baghdadi, N., Lili-Chabaane, Z., & Mougenot, B. (2014). Multi-frequency analysis of soil moisture vertical heterogeneity effect on radar backscatter. In 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 379-384.
  • Li, W., Liu, C., Yang, Y., Awais, M., Li, W., Ying, P., Ru, W., & Cheema, M. J. M. (2022). A UAV-aided prediction system of soil moisture content relying on thermal infrared remote sensing. International Journal of Environmental Science and Technology, 19(10), 9587-9600.
  • Mirsoleimani, H. R., Sahebi, M. R., Baghdadi, N., & El Hajj, M. (2019). Bare soil surface moisture retrieval from sentinel-1 SAR data based on the calibrated IEM and dubois models using neural networks. Sensors, 19(14), 3209.
  • Moran, M. S., Peters-Lidard, C. D., Watts, J. M., & McElroy, S. (2004). Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Canadian journal of remote sensing, 30(5), 805-826.
  • Özerdem, M. S., & Acar, E. (2017). Toprak nemi tahmini için Radarsat-2 verisinden çoklu saçılma katsayılarının elde edilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 8(4), 759-766 (In Turkish).
  • Parida, B. R., Pandey, A. C., Kumar, R., & Kumar, S. (2022). Surface soil moisture retrieval using sentinel-1 SAR data for crop planning in Kosi River Basin of North Bihar. Agronomy, 12(5), 1045.
  • Rawat, K. S., Singh, S. K., & Pal, R. K. (2019). Synergetic methodology for estimation of soil moisture over agricultural area using Landsat-8 and Sentinel-1 satellite data. Remote Sensing Applications: Society and Environment, 15, 100250.
  • Song, P., Zhang, Y., & Tian, J. (2021). Improving surface soil moisture estimates in humid regions by an enhanced remote sensing technique. Geophysical Research Letters, 48(5), e2020GL091459.
  • Wyatt, B. M., Ochsner, T. E., & Zou, C. B. (2021). Estimating root zone soil moisture across diverse land cover types by integrating in-situ and remotely sensed data. Agricultural and Forest Meteorology, 307, 108471.
  • Yetik, A. K., & Asik, M. (2021). Methods of Soil Moisture Content Monitoring and Determination. Bilecik Seyh Edebali University Journal of Science, 8(1), 484-496 (In Turkish).
  • Zribi, M., Foucras, M., Baghdadi, N., Demarty, J., & Muddu, S. (2020). A new reflectivity index for the retrieval of surface soil moisture from radar data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 818-826.

Sentinel-1 görüntüsü ile toprak neminin belirlenmesi

Yıl 2024, , 149 - 156, 01.11.2024
https://doi.org/10.9733/JGG.2024R0010.E

Öz

Toprak nemi, tarımsal uygulamalar, iklim değişikliği, erozyon ve su yönetimi konuları için hayati önem taşımaktadır. Bu nedenle, toprak neminin izlenmesi ve mekansal dağılımı da önemlidir. Günümüzde, toprak neminin belirlenmesinde geleneksel yöntemlerin yanı sıra uzaktan algılamanın kullanımı hızla artmaktadır. Bu bağlamda, Sentetik Açıklıklı Radar görüntüleri uzaktan algılama araçlarından birini oluşturmaktadır. Bu çalışmada, 25 dekarlık bir alanda Sentinel-1 görüntülemesi kullanılarak toprak nemi belirlenmiştir. Sentinel-1 geçişi ile senkronize olarak bir toprak nem ölçer ile yerinde ölçümler gerçekleştirilmiştir. Çalışma sonucunda, yerinde yapılan toprak nemi ölçümleri ve Sentinel-1 geri saçılımından türetilen bir model kullanılarak ampirik bir yaklaşımla toprak nemi hesaplanmıştır.

Proje Numarası

CUBAP M – 2023 – 845

Teşekkür

We want to thank CUBAP (Cumhuriyet University Scientific Research Projects) for M – 2023 – 845 numbered Project and their co-operation.

Kaynakça

  • Bajgiran, P. R., Berg, A. A., Champagne, C., & Omasa, K. (2013). Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS journal of photogrammetry and remote sensing, 83, 94-103.
  • Bazzi, H., Baghdadi, N., Nino, P., Napoli, R., Najem, S., Zribi, M., & Vaudour, E. (2024). Retrieving Soil Moisture from Sentinel-1: Limitations over Certain Crops and Sensitivity to the First Soil Thin Layer. Water, 16(1), 40.
  • Bormudoi, A., Nagai, M., Katiyar, V., Ichikawa, D., & Eguchi, T. (2023). Soil Moisture Change Detection with Sentinel-1 SAR Image for Slow Onsetting Disasters: An Investigative Study Using Index Based Method. Land, 12(2), 506.
  • El Hajj, M., Baghdadi, N., Bazzi, H., & Zribi, M. (2019). Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sensing, 11(1), 31.
  • Esch, S., Korres, W., Reichenau, T. G., & Schneider, K. (2018). Soil moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas. Journal of Applied Remote Sensing, 12(2), 022206-022206.
  • Filion, R., Bernier, M., Paniconi, C., Chokmani, K., & Talazac, M. (2014). Empirical modelling to estimate surface soil moisture at field scale in Sardinia, Italy: Comparison between optical and SAR data. In 2014 IEEE geoscience and remote sensing symposium, 3243-3246.
  • Geudtner, D., Torres, R., Snoeij, P., Davidson, M., & Rommen, B. (2014). Sentinel-1 system capabilities and applications. In 2014 IEEE geoscience and remote sensing symposium, 1457-1460.
  • Gorrab, A., Zribi, M., Baghdadi, N., Lili-Chabaane, Z., & Mougenot, B. (2014). Multi-frequency analysis of soil moisture vertical heterogeneity effect on radar backscatter. In 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 379-384.
  • Li, W., Liu, C., Yang, Y., Awais, M., Li, W., Ying, P., Ru, W., & Cheema, M. J. M. (2022). A UAV-aided prediction system of soil moisture content relying on thermal infrared remote sensing. International Journal of Environmental Science and Technology, 19(10), 9587-9600.
  • Mirsoleimani, H. R., Sahebi, M. R., Baghdadi, N., & El Hajj, M. (2019). Bare soil surface moisture retrieval from sentinel-1 SAR data based on the calibrated IEM and dubois models using neural networks. Sensors, 19(14), 3209.
  • Moran, M. S., Peters-Lidard, C. D., Watts, J. M., & McElroy, S. (2004). Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Canadian journal of remote sensing, 30(5), 805-826.
  • Özerdem, M. S., & Acar, E. (2017). Toprak nemi tahmini için Radarsat-2 verisinden çoklu saçılma katsayılarının elde edilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 8(4), 759-766 (In Turkish).
  • Parida, B. R., Pandey, A. C., Kumar, R., & Kumar, S. (2022). Surface soil moisture retrieval using sentinel-1 SAR data for crop planning in Kosi River Basin of North Bihar. Agronomy, 12(5), 1045.
  • Rawat, K. S., Singh, S. K., & Pal, R. K. (2019). Synergetic methodology for estimation of soil moisture over agricultural area using Landsat-8 and Sentinel-1 satellite data. Remote Sensing Applications: Society and Environment, 15, 100250.
  • Song, P., Zhang, Y., & Tian, J. (2021). Improving surface soil moisture estimates in humid regions by an enhanced remote sensing technique. Geophysical Research Letters, 48(5), e2020GL091459.
  • Wyatt, B. M., Ochsner, T. E., & Zou, C. B. (2021). Estimating root zone soil moisture across diverse land cover types by integrating in-situ and remotely sensed data. Agricultural and Forest Meteorology, 307, 108471.
  • Yetik, A. K., & Asik, M. (2021). Methods of Soil Moisture Content Monitoring and Determination. Bilecik Seyh Edebali University Journal of Science, 8(1), 484-496 (In Turkish).
  • Zribi, M., Foucras, M., Baghdadi, N., Demarty, J., & Muddu, S. (2020). A new reflectivity index for the retrieval of surface soil moisture from radar data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 818-826.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotogrametri ve Uzaktan Algılama
Bölüm Araştırma Makalesi
Yazarlar

Rutkay Atun 0000-0001-9959-2058

Onder Gursoy 0000-0002-1531-135X

Proje Numarası CUBAP M – 2023 – 845
Erken Görünüm Tarihi 29 Temmuz 2024
Yayımlanma Tarihi 1 Kasım 2024
Gönderilme Tarihi 8 Mayıs 2024
Kabul Tarihi 24 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Atun, R., & Gursoy, O. (2024). Determining soil moisture with Sentinel-1 image. Jeodezi Ve Jeoinformasyon Dergisi, 11(2), 149-156. https://doi.org/10.9733/JGG.2024R0010.E
AMA Atun R, Gursoy O. Determining soil moisture with Sentinel-1 image. hkmojjd. Kasım 2024;11(2):149-156. doi:10.9733/JGG.2024R0010.E
Chicago Atun, Rutkay, ve Onder Gursoy. “Determining Soil Moisture With Sentinel-1 Image”. Jeodezi Ve Jeoinformasyon Dergisi 11, sy. 2 (Kasım 2024): 149-56. https://doi.org/10.9733/JGG.2024R0010.E.
EndNote Atun R, Gursoy O (01 Kasım 2024) Determining soil moisture with Sentinel-1 image. Jeodezi ve Jeoinformasyon Dergisi 11 2 149–156.
IEEE R. Atun ve O. Gursoy, “Determining soil moisture with Sentinel-1 image”, hkmojjd, c. 11, sy. 2, ss. 149–156, 2024, doi: 10.9733/JGG.2024R0010.E.
ISNAD Atun, Rutkay - Gursoy, Onder. “Determining Soil Moisture With Sentinel-1 Image”. Jeodezi ve Jeoinformasyon Dergisi 11/2 (Kasım 2024), 149-156. https://doi.org/10.9733/JGG.2024R0010.E.
JAMA Atun R, Gursoy O. Determining soil moisture with Sentinel-1 image. hkmojjd. 2024;11:149–156.
MLA Atun, Rutkay ve Onder Gursoy. “Determining Soil Moisture With Sentinel-1 Image”. Jeodezi Ve Jeoinformasyon Dergisi, c. 11, sy. 2, 2024, ss. 149-56, doi:10.9733/JGG.2024R0010.E.
Vancouver Atun R, Gursoy O. Determining soil moisture with Sentinel-1 image. hkmojjd. 2024;11(2):149-56.