Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of altitude and distance on zenith tropospheric delay and integrated water vapour estimations in a local GNSS CORS network

Yıl 2021, , 72 - 83, 01.05.2021
https://doi.org/10.9733/JGG.2021R0006.E

Öz

In this paper, to investigate the usability of Continuously Operating Reference Stations managed by the Istanbul Water and Sewerage Administration (ISKI CORS) for weather prediction studies, the effects of altitude and distance on Zenith Tropospheric Delay (ZTD) and Integrated Water Vapour (IWV) estimations were analysed. Within the scope of this study, the authors determined accuracies of ZTD and IWV values - based on the selected reference stations and analysed them for altitude and distance factors. GnSmart software is used for ZTD estimation as this software broadcasts CORS correction and GNSS Analysis and Positioning Software (GAPS) is used for IWV estimation. In this study, a single reference station was used to test the accuracy of ZTD and IWV values obtained from local ISKI CORS network stations (TUZL station for ZTD values and radiosonde station numbered 17064 for IWV values). The determined RMSE values could not reach the ZTD and IWV precision standards of the World Meteorology Organization (WMO). One reason for this is that a single station is selected as a reference. In short, the authors express that the ZTD and IWV values of ISKI CORS stations are not similar, but there is a significant difference between them. It was also understood that a single radiosonde station is not sufficient to determine the IWV values of the stations in the local ISKI CORS network, and the GNSS IWV values obtained from the stations can be meaningful.

Kaynakça

  • Abdellaoui, H., Zaourar, N., & Kahlouche, S. (2019). Contribution of permanent stations GPS data to estimate the water vapor content over Algeria. Arabian Journal of Geosciences, 12(3), 81.
  • Acheampong, A. A., Fosu, C., Amekudzi, L. K., & Kaas, E. (2017). Precipitable water comparisons over Ghana using PPP Techniques and reanalysis data. South African Journal of Geomatics, 6(3), 449-460.
  • Ahmed, F., Vaclavovic, P., Teferle, F. N., Douša, J., Bingley, R., & Laurichesse, D. (2016). Comparative analysis of real-time precise point positioning zenith total delay estimates. GPS Solutions, 20(2), 187-199.
  • Astudillo, J.M., Lau, L., Tang, Y. T., & Moore, T. (2018). Analysing the zenith tropospheric delay estimates in on-line precise point positioning (PPP) services and PPP software packages. Sensors, 18(2), 580.
  • Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS Meteorology: Remote sensing of atmospheric water vapor using or estimation of the wet delay. J. Geophys. Res, 97, 15787-15801.
  • Bock, O., Bouin, M. N., Walpersdorf, A., Lafore, J. P., Janicot, S., Guichard, F., & Agusti‐Panareda, A. (2007). Comparison of ground‐based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(629), 2011-2027.
  • Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data. Journal of geophysical research: solid earth, 111(B2).
  • Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio science, 20(6), 1593-1607.
  • Deniz, I., Mekik, C., & Gurbuz, G. (2015). Türkiye için Islak Zenit Gecikmesi Su Buharı Dönüşüm Faktörünün Modellenmesi. UCTEA Chamber of Survey and Cadastre Engineers. 15. Turkey Scientific and Technical Conference, Ankara, Turkey.
  • Deniz, I., & Mekik, C. (2017). TUSAGA-Aktif’in GNSS Meteorolojisi Ağı Olarak Kullanılması. UCTEA Chamber of Survey and Cadastre Engineers. 16. Turkey Scientific and Technical Conference, Ankara, Turkey.
  • Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., van Hove, T., Ware, R., McClusky, S., Herring, T.A., & King, R.W. (1996). GPS meteorology: Direct estimation of the absolute value of precipitable water. Journal of applied meteorology, 35(6), 830-838.
  • Jin, S., Park, J. U., Cho, J. H., & Park, P. H. (2007). Seasonal variability of GPS‐derived zenith tropospheric delay (1994–2006) and climate implications. Journal of geophysical research: atmospheres, 112(D9).
  • Jin, S., Luo, O. F., & Gleason, S. (2009). Characterization of diurnal cycles in ZTD from a decade of global GPS observations. Journal of Geodesy, 83(6), 537-545.
  • Leandro, R F., Santos, M. C., & Langley, R. B. (2006). UNB neutral atmosphere models: development and performance. Proceedings of ION NTM, 564-573.
  • Leandro, R. F., Santos, M. C., & Langley, R. B. (2007). GAPS: The GPS analysis and positioning software-A brief overview. In Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 1807-1811.
  • Li, W., Yuan, Y., Ou, J., Li, H., & Li, Z. (2012). A New Global, Zenith Tropospheric Delay IGGtrop for GNSS Applications. Chin. Sci. Bull., 57, 2132 - 2139.
  • Li, X., Dick, G., Lu, C., Ge, M., Nilsson, T., Ning, T., Wickert, J., & Schuh, H. (2015). Multi-GNSS meteorology: real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. IEEE Transactions on Geoscience and Remote Sensing, 53(12), 6385-6393.
  • Lu, C., Li, X., Nilsson, T., Ning, T., Heinkelmann, R., Ge, M., Glaser, S., & Schuh, H. (2015). Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. Journal of Geodesy, 89(9), 843-856.
  • Lu, C., Li, X., Ge, M., Heinkelmann, R., Nilsson, T., Soja, B., Dick, G., & Schuh, H. (2016). Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS. GPS solutions, 20(4), 703-713.
  • Mekik, C., & Deniz, I. (2017). Modelling and validation of the weighted mean temperature for Turkey. Meteorological Applications, 24(1), 92-100.
  • Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research: Solid Earth, 101(B2), 3227-3246.
  • Rocken, C., van Hove, T., & Ware, R. (1997). Near real‐time GPS sensing of atmospheric water vapor. Geophysical research letters, 24(24), 3221-3224.
  • Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247-251.
  • Smith, S. W. (2003). Digital Signal Processing: A Practical Guide for Engineers and Scientists. Burlington, USA: Newnes.
  • Tunali, E., & Ozludemir, M. T. (2019). GNSS PPP with different troposphere models during severe weather conditions. GPS Solutions, 23(3), 82.
  • Vedel, H., & Huang, X. Y. (2004). Impact of ground based GPS data on numerical weather prediction. Journal of the Meteorological Society of Japan. Ser. II, 82(1B), 459-472.
  • Wang, J., & Zhang, L. (2008). Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. Journal of Climate, 21(10), 2218-2238.
  • Wang, J., & Zhang, L. (2009). Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products. Journal of Geodesy, 83(3-4), 209-217.
  • Xu, A., Xu, Z., Ge, M., Xu, X., Zhu, H., & Sui, X. (2013). Estimating zenith tropospheric delays from BeiDou navigation satellite system observations. Sensors, 13(4), 4514-4526.
  • Zhang, H., Yuan, Y., Li, W., Li, Y., & Chai, Y. (2016). Assessment of three tropospheric delay models (IGGtrop, EGNOS and UNB3m) based on precise point positioning in the Chinese region. Sensors, 16(1), 122.
  • URL-1: WMO. https://public.wmo.int/en/resources/bulletin/global-observing-system (Accessed: 14 August 2020).
  • URL-2: Radiosonde. University of Wyoming, Department of Atmospheric Science. http://weather.uwyo.edu/upperair/sounding.html (Accessed: 1 July 2018).
  • URL-3: GAPS. GNSS Analysis and Positioning Service. http://gaps.gge.unb.ca (Accessed: 30 June 2018).
  • URL-4: ISKI CORS. http://ukbs.iski.gov.tr (Accessed: 1 May 2018).

Lokal bir GNSS CORS ağında yükseklik ve mesafenin zenit troposferik gecikme ve entegre su buharı kestirimleri üzerine etkisi

Yıl 2021, , 72 - 83, 01.05.2021
https://doi.org/10.9733/JGG.2021R0006.E

Öz

Bu makalede, İstanbul Su ve Kanalizasyon İdaresi’nin yönettiği Uydulardan Konum Belirleme Sistemi’nin (İSKİ UKBS) hava tahmin çalışmalarında kullanılabilirliğini araştırmak için yükseklik ve mesafenin Zenit Troposferik Gecikme (Zenith Tropospheric Delay, ZTD) ve Entegre Su Buharı (Integrated Water Vapour , IWV) kestirimleri üzerindeki etkisi analiz edilmiştir. Çalışma kapsamında, yazarlar seçilen referans istasyonlara göre ZTD ve IWV değerlerinin doğruluğunu belirleyip mesafe ve yükseklik faktörlerine göre analiz etmişlerdir. ZTD kestirimi için CORS düzeltme yayını yapan GnSmart yazılımı, IWV kestirimi için ise GNSS Analiz ve Konum Belirleme Servisi (GAPS) kullanılmıştır. Bu çalışmada, yerel İSKİ UKBS ağı istasyonlarından elde edilen ZTD ve IWV değerlerinin doğruluğunu test etmek için tek bir referans istasyon kullanılmıştır (ZTD değerleri için TUZL istasyonu ve IWV değerleri için 17064 numaralı radyosonda istasyonu). Belirlenen RMSE değerleri Dünya Meteoroloji Örgütü'nün ZTD ve IWV presizyon standartlarına ulaşamamıştır. Bunun bir nedeni, referans olarak tek bir istasyonun seçilmesidir. Özet olarak yazarlar, İSKİ UKBS istasyonlarının ZTD ve IWV değerlerinin benzer olmadığını ancak aralarında anlamlı bir fark olduğunu ifade etmektedirler. Yerel İSKİ UKBS ağındaki istasyonların IWV değerlerinin belirlenmesi için tek bir radyosonda istasyonunun yeterli olmadığı, istasyonlardan elde edilen GNSS IWV değerlerinin anlamlı olabileceği de anlaşılmıştır.

Kaynakça

  • Abdellaoui, H., Zaourar, N., & Kahlouche, S. (2019). Contribution of permanent stations GPS data to estimate the water vapor content over Algeria. Arabian Journal of Geosciences, 12(3), 81.
  • Acheampong, A. A., Fosu, C., Amekudzi, L. K., & Kaas, E. (2017). Precipitable water comparisons over Ghana using PPP Techniques and reanalysis data. South African Journal of Geomatics, 6(3), 449-460.
  • Ahmed, F., Vaclavovic, P., Teferle, F. N., Douša, J., Bingley, R., & Laurichesse, D. (2016). Comparative analysis of real-time precise point positioning zenith total delay estimates. GPS Solutions, 20(2), 187-199.
  • Astudillo, J.M., Lau, L., Tang, Y. T., & Moore, T. (2018). Analysing the zenith tropospheric delay estimates in on-line precise point positioning (PPP) services and PPP software packages. Sensors, 18(2), 580.
  • Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS Meteorology: Remote sensing of atmospheric water vapor using or estimation of the wet delay. J. Geophys. Res, 97, 15787-15801.
  • Bock, O., Bouin, M. N., Walpersdorf, A., Lafore, J. P., Janicot, S., Guichard, F., & Agusti‐Panareda, A. (2007). Comparison of ground‐based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(629), 2011-2027.
  • Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data. Journal of geophysical research: solid earth, 111(B2).
  • Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio science, 20(6), 1593-1607.
  • Deniz, I., Mekik, C., & Gurbuz, G. (2015). Türkiye için Islak Zenit Gecikmesi Su Buharı Dönüşüm Faktörünün Modellenmesi. UCTEA Chamber of Survey and Cadastre Engineers. 15. Turkey Scientific and Technical Conference, Ankara, Turkey.
  • Deniz, I., & Mekik, C. (2017). TUSAGA-Aktif’in GNSS Meteorolojisi Ağı Olarak Kullanılması. UCTEA Chamber of Survey and Cadastre Engineers. 16. Turkey Scientific and Technical Conference, Ankara, Turkey.
  • Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., van Hove, T., Ware, R., McClusky, S., Herring, T.A., & King, R.W. (1996). GPS meteorology: Direct estimation of the absolute value of precipitable water. Journal of applied meteorology, 35(6), 830-838.
  • Jin, S., Park, J. U., Cho, J. H., & Park, P. H. (2007). Seasonal variability of GPS‐derived zenith tropospheric delay (1994–2006) and climate implications. Journal of geophysical research: atmospheres, 112(D9).
  • Jin, S., Luo, O. F., & Gleason, S. (2009). Characterization of diurnal cycles in ZTD from a decade of global GPS observations. Journal of Geodesy, 83(6), 537-545.
  • Leandro, R F., Santos, M. C., & Langley, R. B. (2006). UNB neutral atmosphere models: development and performance. Proceedings of ION NTM, 564-573.
  • Leandro, R. F., Santos, M. C., & Langley, R. B. (2007). GAPS: The GPS analysis and positioning software-A brief overview. In Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 1807-1811.
  • Li, W., Yuan, Y., Ou, J., Li, H., & Li, Z. (2012). A New Global, Zenith Tropospheric Delay IGGtrop for GNSS Applications. Chin. Sci. Bull., 57, 2132 - 2139.
  • Li, X., Dick, G., Lu, C., Ge, M., Nilsson, T., Ning, T., Wickert, J., & Schuh, H. (2015). Multi-GNSS meteorology: real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. IEEE Transactions on Geoscience and Remote Sensing, 53(12), 6385-6393.
  • Lu, C., Li, X., Nilsson, T., Ning, T., Heinkelmann, R., Ge, M., Glaser, S., & Schuh, H. (2015). Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. Journal of Geodesy, 89(9), 843-856.
  • Lu, C., Li, X., Ge, M., Heinkelmann, R., Nilsson, T., Soja, B., Dick, G., & Schuh, H. (2016). Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS. GPS solutions, 20(4), 703-713.
  • Mekik, C., & Deniz, I. (2017). Modelling and validation of the weighted mean temperature for Turkey. Meteorological Applications, 24(1), 92-100.
  • Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research: Solid Earth, 101(B2), 3227-3246.
  • Rocken, C., van Hove, T., & Ware, R. (1997). Near real‐time GPS sensing of atmospheric water vapor. Geophysical research letters, 24(24), 3221-3224.
  • Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247-251.
  • Smith, S. W. (2003). Digital Signal Processing: A Practical Guide for Engineers and Scientists. Burlington, USA: Newnes.
  • Tunali, E., & Ozludemir, M. T. (2019). GNSS PPP with different troposphere models during severe weather conditions. GPS Solutions, 23(3), 82.
  • Vedel, H., & Huang, X. Y. (2004). Impact of ground based GPS data on numerical weather prediction. Journal of the Meteorological Society of Japan. Ser. II, 82(1B), 459-472.
  • Wang, J., & Zhang, L. (2008). Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. Journal of Climate, 21(10), 2218-2238.
  • Wang, J., & Zhang, L. (2009). Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products. Journal of Geodesy, 83(3-4), 209-217.
  • Xu, A., Xu, Z., Ge, M., Xu, X., Zhu, H., & Sui, X. (2013). Estimating zenith tropospheric delays from BeiDou navigation satellite system observations. Sensors, 13(4), 4514-4526.
  • Zhang, H., Yuan, Y., Li, W., Li, Y., & Chai, Y. (2016). Assessment of three tropospheric delay models (IGGtrop, EGNOS and UNB3m) based on precise point positioning in the Chinese region. Sensors, 16(1), 122.
  • URL-1: WMO. https://public.wmo.int/en/resources/bulletin/global-observing-system (Accessed: 14 August 2020).
  • URL-2: Radiosonde. University of Wyoming, Department of Atmospheric Science. http://weather.uwyo.edu/upperair/sounding.html (Accessed: 1 July 2018).
  • URL-3: GAPS. GNSS Analysis and Positioning Service. http://gaps.gge.unb.ca (Accessed: 30 June 2018).
  • URL-4: ISKI CORS. http://ukbs.iski.gov.tr (Accessed: 1 May 2018).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ömer Gökdaş 0000-0003-0109-8073

Mustafa Tevfik Özlüdemir 0000-0002-1413-9244

Yayımlanma Tarihi 1 Mayıs 2021
Gönderilme Tarihi 13 Temmuz 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Gökdaş, Ö., & Özlüdemir, M. T. (2021). Effect of altitude and distance on zenith tropospheric delay and integrated water vapour estimations in a local GNSS CORS network. Jeodezi Ve Jeoinformasyon Dergisi, 8(1), 72-83. https://doi.org/10.9733/JGG.2021R0006.E
AMA Gökdaş Ö, Özlüdemir MT. Effect of altitude and distance on zenith tropospheric delay and integrated water vapour estimations in a local GNSS CORS network. hkmojjd. Mayıs 2021;8(1):72-83. doi:10.9733/JGG.2021R0006.E
Chicago Gökdaş, Ömer, ve Mustafa Tevfik Özlüdemir. “Effect of Altitude and Distance on Zenith Tropospheric Delay and Integrated Water Vapour Estimations in a Local GNSS CORS Network”. Jeodezi Ve Jeoinformasyon Dergisi 8, sy. 1 (Mayıs 2021): 72-83. https://doi.org/10.9733/JGG.2021R0006.E.
EndNote Gökdaş Ö, Özlüdemir MT (01 Mayıs 2021) Effect of altitude and distance on zenith tropospheric delay and integrated water vapour estimations in a local GNSS CORS network. Jeodezi ve Jeoinformasyon Dergisi 8 1 72–83.
IEEE Ö. Gökdaş ve M. T. Özlüdemir, “Effect of altitude and distance on zenith tropospheric delay and integrated water vapour estimations in a local GNSS CORS network”, hkmojjd, c. 8, sy. 1, ss. 72–83, 2021, doi: 10.9733/JGG.2021R0006.E.
ISNAD Gökdaş, Ömer - Özlüdemir, Mustafa Tevfik. “Effect of Altitude and Distance on Zenith Tropospheric Delay and Integrated Water Vapour Estimations in a Local GNSS CORS Network”. Jeodezi ve Jeoinformasyon Dergisi 8/1 (Mayıs 2021), 72-83. https://doi.org/10.9733/JGG.2021R0006.E.
JAMA Gökdaş Ö, Özlüdemir MT. Effect of altitude and distance on zenith tropospheric delay and integrated water vapour estimations in a local GNSS CORS network. hkmojjd. 2021;8:72–83.
MLA Gökdaş, Ömer ve Mustafa Tevfik Özlüdemir. “Effect of Altitude and Distance on Zenith Tropospheric Delay and Integrated Water Vapour Estimations in a Local GNSS CORS Network”. Jeodezi Ve Jeoinformasyon Dergisi, c. 8, sy. 1, 2021, ss. 72-83, doi:10.9733/JGG.2021R0006.E.
Vancouver Gökdaş Ö, Özlüdemir MT. Effect of altitude and distance on zenith tropospheric delay and integrated water vapour estimations in a local GNSS CORS network. hkmojjd. 2021;8(1):72-83.