Araştırma Makalesi
BibTex RIS Kaynak Göster

Ordu-Giresun Havalimanı'nın sürekli saçıcılar interferometrisi (PSI) ile deformasyon analizi

Yıl 2021, , 161 - 169, 01.11.2021
https://doi.org/10.9733/JGG.2021R0012.T

Öz

Günümüzde pek çok ülke, hızlı kentleşmenin getirmiş olduğu arazi taleplerini karşılayamamaktadır. Özellikle kıyı kentleri için bu sorun daha da büyüktür ve problemi ortadan kaldırmak amacıyla dolgu projeleri üretilmektedir. Ülkemizde de bu tip projelere benzer pek çok uygulama yapılmaktadır. Bu projelerin en önemlilerinden birisi de Ordu-Giresun il sınırına yakın Doğu Karadeniz kıyılarına yapılmış olan Ordu-Giresun Havalimanı’dır. Deniz üzerine dolgu ile inşa edilen arazinin temelleri yerleşime duyarlı ve jeolojik olarak hareketli bir yapıya sahiptir. Bu durum özellikle nüfusu fazla olan alanlarda olumsuz etkilere sebep olabilmektedir. Bu tür alanlar üzerine inşa edilen havalimanlarında işletme güvenliğinin sağlanması kamu güvenliği açısından oldukça hayati bir öneme sahiptir ve bu güvenliğin sağlanması için bölgesel ölçekte yüzey deformasyonu izlenmelidir. Bu çalışmada 2011 yılında temeli atılıp 2015 yılında faaliyete geçen Ordu-Giresun Havalimanı’nın yüzey deformasyonu belirlenmiştir. Bu amaçla Sentinel-1A/B görüntüleri, aynı alanları kapsayan geometride alçalan yörüngede elde edilerek Sürekli Saçıcılar İnterferometrisi (PSI) tekniği ile zaman serileri analiz edilmiştir. Zaman serileri, PSI yaklaşımıyla ücretsiz olarak kullanıcıya sunulan SNAP ve Sürekli Saçıcılar için Stanford Yöntemi (StaMPS) paket programları kullanılarak oluşturulmuştur. Gerçekleştirilen analiz sonucunda Ağustos 2017 ve Şubat 2019 tarihleri arasında Ordu-Giresun Havalimanı’ndaki deformasyon miktarı yaklaşık -14 ila 9 mm arasında olduğu belirlenmiştir. İlerleyen dönemlerdeki çalışmalarda havalimanının daha geniş zaman aralığında ve iki farklı yörüngede deformasyonunun izlenmesi planlanmaktadır.

Teşekkür

Yazar, çalışmada kullanılan InSAR verileri için Avrupa Uzay Ajansı'na (ESA) teşekkür eder.

Kaynakça

  • Abdikan, S., Arıkan, M., Şanlı, F. B., & Çakır, Z. (2014). Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environmental Earth Sciences, 71(9), 4081-4089.
  • Bianchini Ciampoli, L., Gagliardi, V., Ferrante, C., Calvi, A., D’Amico, F., & Tosti, F. (2020). Displacement monitoring in airport runways by persistent scatterers SAR interferometry. Remote Sensing, 12(21), 3564.
  • Capaldo, P., Crespi, M., Fratarcangeli, F., Nascetti, A., & Pieralice, F. (2011). High-resolution SAR radargrammetry: A first application with COSMO-SkyMed spotlight imagery. IEEE Geoscience and Remote Sensing Letters, 8(6), 1100-1104.
  • Chen, B., Gong, H., Li, X., Lei, K., Gao, M., Zhou, C., & Ke, Y. (2015). Spatial–temporal evolution patterns of land subsidence with different situation of space utilization. Natural Hazards, 77(3), 1765-1783.
  • Chen, M., Tomás, R., Li, Z., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J., & Gong, X. (2016). Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sensing, 8(6), 468.
  • Dai, K., Shi, X., Gou, J., Hu, L., Chen, M., Zhao, L., Dong, X., & Li, Z. (2020). Diagnosing Subsidence Geohazard at Beijing Capital International Airport, from High-Resolution SAR Interferometry. Sustainability, 12(6), 2269.
  • Ding, X. L., Liu, G. X., Li, Z. W., Li, Z. L., & Chen, Y. Q. (2004). Ground subsidence monitoring in Hong Kong with satellite SAR interferometry. Photogrammetric Engineering & Remote Sensing, 70(10), 1151-1156.
  • Douglas, I., & Lawson, N. (2003). Airport construction: materials use and geomorphic change. Journal of Air Transport Management, 9(3), 177-185.
  • Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on geoscience and remote sensing, 38(5), 2202-2212.
  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20.
  • Gao, M., Gong, H., Li, X., Chen, B., Zhou, C., Shi, M., Guo, L., Chen, Z., Ni, Z., & Duan, G. (2019). Land subsidence and ground fissures in Beijing capital international airport (bcia): Evidence from quasi-ps insar analysis. Remote Sensing, 11(12), 1466.
  • Garthwaite, M. C. (2017). On the design of radar corner reflectors for deformation monitoring in multi-frequency InSAR. Remote Sensing, 9(7), 648.
  • Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Springer: Berlin, Germany.
  • Higgins, S. A., Overeem, I., Steckler, M. S., Syvitski, J. P., Seeber, L., & Akhter, S. H. (2014). InSAR measurements of compaction and subsidence in the Ganges‐Brahmaputra Delta, Bangladesh. Journal of Geophysical Research: Earth Surface, 119(8), 1768-1781.
  • Hoeksema, R. J. (2007). Three stages in the history of land reclamation in the Netherlands. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 56(S1), S113-S126.
  • Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).
  • Hooper, A., Spaans, K., Bekaert, D., Cuenca, M. C., Arıkan, M., & Oyen, A. (2010). StaMPS/MTI manual. Delft Institute of Earth Observation and Space Systems Delft University of Technology, Kluyverweg, 1, 2629.
  • Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L., & Sun, Q. (2012). 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. Journal of Geodesy, 86(11), 1029-1041.
  • Jiang, L., & Lin, H. (2010). Integrated analysis of SAR interferometric and geological data for investigating long-term reclamation settlement of Chek Lap Kok Airport, Hong Kong. Engineering Geology, 110(3-4), 77-92.
  • Jiang, Y., Liao, M., Wang, H., Zhang, L., & Balz, T. (2016). Deformation monitoring and analysis of the geological environment of Pudong international airport with persistent scatterer SAR interferometry. Remote Sensing, 8(12), 1021.
  • Kampes, B. M. (2006). The Permanent Scatterer Technique. Radar Interferometry: Persistent Scatterer Technique. Springer: Dordrecht, The Netherlands.
  • Liu, G., Ding, X., Chen, Y., Li, Z., & Li, Z. (2001). Ground settlement of Chek Lap Kok Airport, Hong Kong, detected by satellite synthetic aperture radar interferometry. Chinese Science Bulletin, 46(21), 1778-1782.
  • Marshall, C., Large, D. J., Athab, A., Evers, S. L., Sowter, A., Marsh, S., & Sjögersten, S. (2018). Monitoring tropical peat related settlement using isbas insar, kuala lumpur international airport (klia). Engineering Geology, 244, 57-65.
  • Pickles, A. R., & Tosen, R. (1998). Settlement of Reclaimed Land for the New Hong Kong International Airport. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 131(4), 191-209.
  • Plant, G. W., Covil, C. S., & Hughes, R. A. (1998). Site Preparation for the New Hong Kong International Airport-The Design,Construction and Performance of the Airport Platform. Thomas Telford: London, UK.
  • Pritchard, M. E., & Simons, M. (2004). An InSAR‐based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems, 5(2).
  • Puzrin, A. M., Alonso, E. E., & Pinyol, N. M. (2010). Unexpected excessive settlements: Kansai international airport, Japan. In Geomechanics of failures. Springer: Dordrecht, The Netherlands.
  • Sefercik, U. G., Yastıklı, N., & Atalay, C. (2017). Terrain estimation performance of advanced SAR satellites: Cosmo-SkyMed and TerraSAR-X. 2017 8th International Conference on Recent Advances in Space Technologies (RAST).
  • Simons, M., Fialko, Y., & Rivera, L. (2002). Coseismic deformation from the 1999 M w 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bulletin of the Seismological Society of America, 92(4), 1390-1402.
  • T.C. Ulaştırma, Denizcilik ve Haberleşme Bakanlığı (2012). Ordu-Giresun Havaalanı Kesim-1 (Tahkimat Km: 0+000–1+500) Deniz Dolguları Revize Geoteknik Proje Raporu. Altyapı Yatırımları Genel Müdürlüğü, Ankara.
  • Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil Mechanics in Engineering Practice. John Wiley and Sons: Hoboken, NJ, USA.
  • Türk, H. (2015). Ordu Giresun Havalimanı (Mekan Seçimi ve Muhtemel Etkileri) (Yüksek Lisans Tezi). Giresun Üniversitesi, Sosyal Bilimler Enstitüsü, Giresun, Türkiye.
  • Xu, B., Feng, G., Li, Z., Wang, Q., Wang, C., & Xie, R. (2016). Coastal subsidence monitoring associated with land reclamation using the point target based SBAS-InSAR method: A case study of Shenzhen, China. Remote Sensing, 8(8), 652.
  • Yang, M., Yang, T., Zhang, L., Lin, J., Qin, X., & Liao, M. (2018). Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets. Remote Sensing, 10(2), 329.
  • Ye, X., Kaufmann, H., & Guo, X. F. (2004). Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors. Photogrammetric Engineering & Remote Sensing, 70(10), 1167-1172.
  • Zhao, Q., Lin, H., Gao, W., Zebker, H. A., Chen, A., & Yeung, K. (2011). InSAR detection of residual settlement of an ocean reclamation engineering project: a case study of Hong Kong International Airport. Journal of oceanography, 67(4), 415-426.
  • Zhuo, G., Dai, K., Huang, H., Li, S., Shi, X., Feng, Y., Li, T., Dong, X., & Deng, J. (2020). Evaluating potential ground subsidence geo-hazard of Xiamen Xiang’an new airport on reclaimed land by SAR interferometry. Sustainability, 12(17), 6991.
  • URL-1: https://tr.wikipedia.org/wiki/Ordu-Giresun_Havaliman%C4%B1 (Erişim Tarihi: 6 Aralık 2020).
  • URL-2: Sea Level Rise in the SF Bay Area Just Got a Lot More Dire. https://www.wired.com/story/sea-level-rise-in-the-sf-bay-area/?verso=true (Erişim Tarihi: 28 Ocak 2021).

Deformation Analysis of Ordu-Giresun Airport by Persistent Scatterer Interferometry (PSI)

Yıl 2021, , 161 - 169, 01.11.2021
https://doi.org/10.9733/JGG.2021R0012.T

Öz

Nowadays, many countries cannot meet the land demands caused by rapid urbanization. This problem is even greater especially for coastal cities and land filling projects have been produced in order to eliminate this problem. In Turkey, there are also many applications similar to this type of projects. One of the most important of these projects is Ordu-Giresun Airport, which was built on the Eastern Black Sea coast close to the Ordu-Giresun provincial border. The foundation of the land, which was built with filling on the sea, is sensitive to settlement and geologically active. This can have adverse effects especially in areas with high population. Ensuring operational security at airports built on such areas is vital in terms of public security and surface deformation should be monitored at regional scale to ensure this security. In this study, the surface deformation of Ordu-Giresun Airport, which was founded in 2011 and became operational in 2015, was determined. For this purpose, Sentinel-1A/B images were obtained in a descending trajectory in geometry covering the same areas, and time series were analyzed with the Persistent Scatterer Interferometry (PSI) technique. Time series were created by using SNAP and Stanford Method Permanent Distributions (StaMPS) package programs offered to the user free of charge with the PSI approach. As a result, it was determined that the deformation at Ordu-Giresun Airport between August 2017 and February 2019 was approximately rates from -14 to 9 mm. In future studies, it is planned to monitor the deformation of the airport in a wider time interval and in two different orbits.

Kaynakça

  • Abdikan, S., Arıkan, M., Şanlı, F. B., & Çakır, Z. (2014). Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environmental Earth Sciences, 71(9), 4081-4089.
  • Bianchini Ciampoli, L., Gagliardi, V., Ferrante, C., Calvi, A., D’Amico, F., & Tosti, F. (2020). Displacement monitoring in airport runways by persistent scatterers SAR interferometry. Remote Sensing, 12(21), 3564.
  • Capaldo, P., Crespi, M., Fratarcangeli, F., Nascetti, A., & Pieralice, F. (2011). High-resolution SAR radargrammetry: A first application with COSMO-SkyMed spotlight imagery. IEEE Geoscience and Remote Sensing Letters, 8(6), 1100-1104.
  • Chen, B., Gong, H., Li, X., Lei, K., Gao, M., Zhou, C., & Ke, Y. (2015). Spatial–temporal evolution patterns of land subsidence with different situation of space utilization. Natural Hazards, 77(3), 1765-1783.
  • Chen, M., Tomás, R., Li, Z., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J., & Gong, X. (2016). Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sensing, 8(6), 468.
  • Dai, K., Shi, X., Gou, J., Hu, L., Chen, M., Zhao, L., Dong, X., & Li, Z. (2020). Diagnosing Subsidence Geohazard at Beijing Capital International Airport, from High-Resolution SAR Interferometry. Sustainability, 12(6), 2269.
  • Ding, X. L., Liu, G. X., Li, Z. W., Li, Z. L., & Chen, Y. Q. (2004). Ground subsidence monitoring in Hong Kong with satellite SAR interferometry. Photogrammetric Engineering & Remote Sensing, 70(10), 1151-1156.
  • Douglas, I., & Lawson, N. (2003). Airport construction: materials use and geomorphic change. Journal of Air Transport Management, 9(3), 177-185.
  • Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on geoscience and remote sensing, 38(5), 2202-2212.
  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20.
  • Gao, M., Gong, H., Li, X., Chen, B., Zhou, C., Shi, M., Guo, L., Chen, Z., Ni, Z., & Duan, G. (2019). Land subsidence and ground fissures in Beijing capital international airport (bcia): Evidence from quasi-ps insar analysis. Remote Sensing, 11(12), 1466.
  • Garthwaite, M. C. (2017). On the design of radar corner reflectors for deformation monitoring in multi-frequency InSAR. Remote Sensing, 9(7), 648.
  • Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Springer: Berlin, Germany.
  • Higgins, S. A., Overeem, I., Steckler, M. S., Syvitski, J. P., Seeber, L., & Akhter, S. H. (2014). InSAR measurements of compaction and subsidence in the Ganges‐Brahmaputra Delta, Bangladesh. Journal of Geophysical Research: Earth Surface, 119(8), 1768-1781.
  • Hoeksema, R. J. (2007). Three stages in the history of land reclamation in the Netherlands. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 56(S1), S113-S126.
  • Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).
  • Hooper, A., Spaans, K., Bekaert, D., Cuenca, M. C., Arıkan, M., & Oyen, A. (2010). StaMPS/MTI manual. Delft Institute of Earth Observation and Space Systems Delft University of Technology, Kluyverweg, 1, 2629.
  • Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L., & Sun, Q. (2012). 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. Journal of Geodesy, 86(11), 1029-1041.
  • Jiang, L., & Lin, H. (2010). Integrated analysis of SAR interferometric and geological data for investigating long-term reclamation settlement of Chek Lap Kok Airport, Hong Kong. Engineering Geology, 110(3-4), 77-92.
  • Jiang, Y., Liao, M., Wang, H., Zhang, L., & Balz, T. (2016). Deformation monitoring and analysis of the geological environment of Pudong international airport with persistent scatterer SAR interferometry. Remote Sensing, 8(12), 1021.
  • Kampes, B. M. (2006). The Permanent Scatterer Technique. Radar Interferometry: Persistent Scatterer Technique. Springer: Dordrecht, The Netherlands.
  • Liu, G., Ding, X., Chen, Y., Li, Z., & Li, Z. (2001). Ground settlement of Chek Lap Kok Airport, Hong Kong, detected by satellite synthetic aperture radar interferometry. Chinese Science Bulletin, 46(21), 1778-1782.
  • Marshall, C., Large, D. J., Athab, A., Evers, S. L., Sowter, A., Marsh, S., & Sjögersten, S. (2018). Monitoring tropical peat related settlement using isbas insar, kuala lumpur international airport (klia). Engineering Geology, 244, 57-65.
  • Pickles, A. R., & Tosen, R. (1998). Settlement of Reclaimed Land for the New Hong Kong International Airport. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 131(4), 191-209.
  • Plant, G. W., Covil, C. S., & Hughes, R. A. (1998). Site Preparation for the New Hong Kong International Airport-The Design,Construction and Performance of the Airport Platform. Thomas Telford: London, UK.
  • Pritchard, M. E., & Simons, M. (2004). An InSAR‐based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems, 5(2).
  • Puzrin, A. M., Alonso, E. E., & Pinyol, N. M. (2010). Unexpected excessive settlements: Kansai international airport, Japan. In Geomechanics of failures. Springer: Dordrecht, The Netherlands.
  • Sefercik, U. G., Yastıklı, N., & Atalay, C. (2017). Terrain estimation performance of advanced SAR satellites: Cosmo-SkyMed and TerraSAR-X. 2017 8th International Conference on Recent Advances in Space Technologies (RAST).
  • Simons, M., Fialko, Y., & Rivera, L. (2002). Coseismic deformation from the 1999 M w 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bulletin of the Seismological Society of America, 92(4), 1390-1402.
  • T.C. Ulaştırma, Denizcilik ve Haberleşme Bakanlığı (2012). Ordu-Giresun Havaalanı Kesim-1 (Tahkimat Km: 0+000–1+500) Deniz Dolguları Revize Geoteknik Proje Raporu. Altyapı Yatırımları Genel Müdürlüğü, Ankara.
  • Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil Mechanics in Engineering Practice. John Wiley and Sons: Hoboken, NJ, USA.
  • Türk, H. (2015). Ordu Giresun Havalimanı (Mekan Seçimi ve Muhtemel Etkileri) (Yüksek Lisans Tezi). Giresun Üniversitesi, Sosyal Bilimler Enstitüsü, Giresun, Türkiye.
  • Xu, B., Feng, G., Li, Z., Wang, Q., Wang, C., & Xie, R. (2016). Coastal subsidence monitoring associated with land reclamation using the point target based SBAS-InSAR method: A case study of Shenzhen, China. Remote Sensing, 8(8), 652.
  • Yang, M., Yang, T., Zhang, L., Lin, J., Qin, X., & Liao, M. (2018). Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets. Remote Sensing, 10(2), 329.
  • Ye, X., Kaufmann, H., & Guo, X. F. (2004). Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors. Photogrammetric Engineering & Remote Sensing, 70(10), 1167-1172.
  • Zhao, Q., Lin, H., Gao, W., Zebker, H. A., Chen, A., & Yeung, K. (2011). InSAR detection of residual settlement of an ocean reclamation engineering project: a case study of Hong Kong International Airport. Journal of oceanography, 67(4), 415-426.
  • Zhuo, G., Dai, K., Huang, H., Li, S., Shi, X., Feng, Y., Li, T., Dong, X., & Deng, J. (2020). Evaluating potential ground subsidence geo-hazard of Xiamen Xiang’an new airport on reclaimed land by SAR interferometry. Sustainability, 12(17), 6991.
  • URL-1: https://tr.wikipedia.org/wiki/Ordu-Giresun_Havaliman%C4%B1 (Erişim Tarihi: 6 Aralık 2020).
  • URL-2: Sea Level Rise in the SF Bay Area Just Got a Lot More Dire. https://www.wired.com/story/sea-level-rise-in-the-sf-bay-area/?verso=true (Erişim Tarihi: 28 Ocak 2021).
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Çağlar Bayık 0000-0001-6606-3272

Yayımlanma Tarihi 1 Kasım 2021
Gönderilme Tarihi 6 Aralık 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Bayık, Ç. (2021). Ordu-Giresun Havalimanı’nın sürekli saçıcılar interferometrisi (PSI) ile deformasyon analizi. Jeodezi Ve Jeoinformasyon Dergisi, 8(2), 161-169. https://doi.org/10.9733/JGG.2021R0012.T
AMA Bayık Ç. Ordu-Giresun Havalimanı’nın sürekli saçıcılar interferometrisi (PSI) ile deformasyon analizi. hkmojjd. Kasım 2021;8(2):161-169. doi:10.9733/JGG.2021R0012.T
Chicago Bayık, Çağlar. “Ordu-Giresun Havalimanı’nın sürekli saçıcılar Interferometrisi (PSI) Ile Deformasyon Analizi”. Jeodezi Ve Jeoinformasyon Dergisi 8, sy. 2 (Kasım 2021): 161-69. https://doi.org/10.9733/JGG.2021R0012.T.
EndNote Bayık Ç (01 Kasım 2021) Ordu-Giresun Havalimanı’nın sürekli saçıcılar interferometrisi (PSI) ile deformasyon analizi. Jeodezi ve Jeoinformasyon Dergisi 8 2 161–169.
IEEE Ç. Bayık, “Ordu-Giresun Havalimanı’nın sürekli saçıcılar interferometrisi (PSI) ile deformasyon analizi”, hkmojjd, c. 8, sy. 2, ss. 161–169, 2021, doi: 10.9733/JGG.2021R0012.T.
ISNAD Bayık, Çağlar. “Ordu-Giresun Havalimanı’nın sürekli saçıcılar Interferometrisi (PSI) Ile Deformasyon Analizi”. Jeodezi ve Jeoinformasyon Dergisi 8/2 (Kasım 2021), 161-169. https://doi.org/10.9733/JGG.2021R0012.T.
JAMA Bayık Ç. Ordu-Giresun Havalimanı’nın sürekli saçıcılar interferometrisi (PSI) ile deformasyon analizi. hkmojjd. 2021;8:161–169.
MLA Bayık, Çağlar. “Ordu-Giresun Havalimanı’nın sürekli saçıcılar Interferometrisi (PSI) Ile Deformasyon Analizi”. Jeodezi Ve Jeoinformasyon Dergisi, c. 8, sy. 2, 2021, ss. 161-9, doi:10.9733/JGG.2021R0012.T.
Vancouver Bayık Ç. Ordu-Giresun Havalimanı’nın sürekli saçıcılar interferometrisi (PSI) ile deformasyon analizi. hkmojjd. 2021;8(2):161-9.