BibTex RIS Kaynak Göster

Accuracy improvement and evaluation measures for registration of multisensor remote sensing imagery

Yıl 2012, Sayı: 106, 131 - 137, 01.12.2012
https://doi.org/10.9733/jgg.251212.1t

Öz

Intensity based image registration methods are widely used in fine geometric registration of multisensor images. Accordingly, for images that are compared through translation of image templates, position where similarity measure is maximized is assumed to indicate best registration. Image registration quality is of crucial importance especially for studies that have high geometric accuracy requirements; e.g. image fusion, change detection, multichannel segmentation, and Digital Terrain Model DTM generation. Accuracy of image registration is conventionally evaluated by means of error measures e.g. RMSE obtained through comparison of coordinates of control points from the target and the reference / ground truth. However, especially for multisensor images with low spatial resolution component, difficulty in precisely positioning control points inhibits both sub pixel accuracy and evaluation of the registration. In this study, three widespread measures in intensity-based image registration namely, Normalized Cross Correlation NCC , Mutual Information MI , and Phase Correlation PC are tested for registering images acquired from EO-1 Hyperion and IKONOS sensors. We propose the use of ‘global similarity’ and ‘inverse consistency’ measures for evaluating the performance of these intensity based automated registration methods.

Kaynakça

  • Baltsavias E., Gruen A., Eisenbeiss H., Zhang L., Waser L.T., (2008), High-quality image matching and automated generation of 3D tree models, International Journal of Remote Sensing, 29(5), 1243–1259.
  • Brown L.G., (1992), A survey of image registration techniques, ACM Computing Surveys, 24(4), 325-376.
  • Bunting P., Labrosse F., Lucas R., (2010), A multi-resolution area- based technique for automatic multi-modal image registration, Image and Vision Computing 28, 1203–1219.
  • Chen H.M., Pramod K., Varshney P.K., Arora M.K., (2003), Performance of Mutual Information Similarity Measure for Registration of Multitemporal Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, 41( 11), 2445-2454.
  • Christensen G.E., Geng X, Kuhl J.G., Bruss J., Grabowski T.J., Allen J.S, Pirwani I.A., Vannier M.W., Damasio H., (2006), Introduction to the non-rigid image registration evaluation project (NIREP). Proceedings of the Third international conference on Biomedical Image Registration’ınİçinde, Springer-Verlag Berlin, Heidelberg, ss.128-135.
  • Christensen G.E., Johnson H.J., (2001), Consistent image registration, IEEE Transactions on Medical Imaging, 20(7), 568–582.
  • Dai X., Khorram S., (1998), Effects of image misregistration on the accuracy of remotely sensed change detection, IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1566–1577.
  • Eismann M.T., Hardie R.C., (2008), Hyperspectral Resolution Enhancement Using High-Resolution Multispectral Imagery With Arbitrary Response Functions, IEEE Transactions on Geoscience and Remote Sensing, 43(3), 455-465.
  • Fookes C., Bennamoun M., (2002), The Use of Mutual Information for Rigid Medical Image Registration: A Review, 2002 IEEE Conference on Systems, Man and Cybernetics, Cilt.4, October 6-9, 2002, Hammamet - Tunisia.
  • Geary R.C., (1954), The Contiguity Ratio and Statistical Mapping, The Incorporated Statistician, 5(3),115–145.
  • Griffth D.A., (2003), Spatial Autocorrelation and Spatial Filtering, Springer Berlin, Germany.
  • Gruen A., (2012), Development and status of Image matching in Photogrammetry, The Photogrammetric Record, 27(137), 36– 57.
  • Inglada J., Giros A., (2004), On the Possibility of Automatic Multisensor Image Registration, IEEE Transactions on Geoscience and Remote Sensing, 42(10), 2104-2120.
  • Keller Y., Averbuch A., (2007), A projection-based extension to phase correlation image alignment, Signal Processing, 87(1), 124-133.
  • Ling, Y., Ehlers, M., Usery, E.L., Madden, M., (2008), Effects of spatial resolution ratio in image fusion, International Journal of Remote Sensing, 29(7), 2157-2167.
  • Mitianoudis N., Stathaki T., (2007), Pixel-based and region-based image fusion schemes using ICA bases, Information Fusion, 8, 131–142.
  • Pluim J.P.W., Maintz J.B.A., Viergever M.A., (2003), Mutual- Information-Based Registration of Medical Images: A Review, IEEE Transaction on Medical Imaging, 22, 986-1004.
  • Roshni V.S., Revathy DR. K., (2008), Using mutual information and cross correlation as metrics for registration of images, Journal of Theoretical and Applied Information Technology, 4(6), 474-481.
  • Suganya R., Priyadharsini K., Rajaram Dr. S., (2010), Intensity Based Image Registration by Maximization of Mutual Information, International Journal of Computer Applications, 1(20), 1-5.
  • Stone H.S., Orchard M.T., Chang E.-C., Martucci S.A., (2001), A fast direct Fourier-based algorithm for subpixel registration of image, IEEE Transactions on Geoscience and Remote Sensing, 39(10), 2235-2243.
  • Thomas C., T. Ranchin T., Wald L., Chanussot L., (2008), Synthesis of Multispectral Images to High Spatial Resolution A Critical Review of Fusion Methods Based on Remote Sensing Physics, IEEE Transactions in Geoscienceand Remote Sensing, 46(5), 1301-1312.
  • Url-1, Hyperion Sensor, USGS EO-1 Website, http://eo1.usgs.gov/, [Erişim; Kasım 2012].
  • Url-2, CHRIS Proba Sensor, Proba – Earthnet Online website, https://earth.esa.int/web/guest/missions/esa-operational-eo- missions/proba, [Erişim; Kasım 2012].
  • Url-3: GeoEye Satellites, http://www.geoeye.com/CorpSite/ products/earth-imagery/geoeye-satellites.aspx, [Erişim; Kasım 2012].
  • Wyawahare M.V., Pradeep D., Patil M., Abhyankar H.K., (2009), Image Registration Techniques: An overview, International Journal of Signal Processing, Image Processing and Pattern Recognition, 2(3), 11-28.
  • Yan H., Li J.G., (2008), Robust Phase Correlation based feature matching for image co-registration and DEM generation, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXVII, Part B7, 1751- 1756.
  • Yokoya N., Yairi T., Iwasaki A., (2012), Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion, IEEE Transactions on Geoscience and Remote Sensing, 50(2), 528-537.
  • Zitova B., Flusser J., (2003), Image registration methods: a survey, Image and Vision Computing, 21, 977-1000.
  • Zhukov B., Oertel D., Lanzl F., Reinhackel G., (1999), Unmixing-Based Multisensor Multiresolution Image Fusion, IEEE Transactions in Geoscience and Remote Sensing, 37(3), 1212-1226.

Farklı alıcılardan elde edilen uydu görüntülerinin çakıştırılmasında başarım artırma ve değerlendirme ölçütleri

Yıl 2012, Sayı: 106, 131 - 137, 01.12.2012
https://doi.org/10.9733/jgg.251212.1t

Öz

Farklı uydu alıcılarından alınan görüntülerin hassas biçimde çakıştırılmasında parlaklık temelli yöntemler yaygın olarak kullanılmaktadır. Buna göre, ötelenerek birbiri ile karşılaştırılan görüntü parçalarında, benzerlik ölçütünü enyüksekleyen konum, en iyi çakışma olarak kabul edilir. Çakıştırmanın kalitesi özellikle imge kaynaştırma, değişim tespiti, çok kanallı bölütleme, Sayısal Arazi Modeli SAM üretimi vb. çalışmalar için kritik öneme sahiptir. Çakıştırma başarımı genellikle hedef imge ve referans / yer doğrusu üzerinde bulunan ortak nesne koordinatlarının karşılaştırılmasından elde edilen hata ölçütleri ile ör. RMSE ile değerlendirilir. Ancak, özellikle farklı alıcılardan elde edilen görüntülerde düşük çözünürlüklü bir bileşen var ise, kontrol noktalarını konumlandırmadaki güçlük, çakıştırmada piksel altı başarımı düşürmekte ve çakıştırma değerlendirmesini zorlaştırmaktadır. Bu çalışmada farklı alıcı karakteristiklerine sahip görüntülerin parlaklık temelli otomatik yöntemlerle çakıştırılmasında yaygın olarak kullanılan üç yöntem; Normalize Çapraz Korelasyon NCC , Ortak Bilgi MI ve Faz Korelasyonu PC , EO-1 Hyperion ve IKONOS alıcılarından elde edilen görüntüleri çakıştırmak üzere test edilmektedir. Her bir yönteme göre elde edilen çakıştırma sonuçlarının başarımını değerlendirmek üzere, ‘global benzerlik’ ve ‘ters tutarlılık’ ölçütlerinin kullanımı önerilmektedir

Kaynakça

  • Baltsavias E., Gruen A., Eisenbeiss H., Zhang L., Waser L.T., (2008), High-quality image matching and automated generation of 3D tree models, International Journal of Remote Sensing, 29(5), 1243–1259.
  • Brown L.G., (1992), A survey of image registration techniques, ACM Computing Surveys, 24(4), 325-376.
  • Bunting P., Labrosse F., Lucas R., (2010), A multi-resolution area- based technique for automatic multi-modal image registration, Image and Vision Computing 28, 1203–1219.
  • Chen H.M., Pramod K., Varshney P.K., Arora M.K., (2003), Performance of Mutual Information Similarity Measure for Registration of Multitemporal Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, 41( 11), 2445-2454.
  • Christensen G.E., Geng X, Kuhl J.G., Bruss J., Grabowski T.J., Allen J.S, Pirwani I.A., Vannier M.W., Damasio H., (2006), Introduction to the non-rigid image registration evaluation project (NIREP). Proceedings of the Third international conference on Biomedical Image Registration’ınİçinde, Springer-Verlag Berlin, Heidelberg, ss.128-135.
  • Christensen G.E., Johnson H.J., (2001), Consistent image registration, IEEE Transactions on Medical Imaging, 20(7), 568–582.
  • Dai X., Khorram S., (1998), Effects of image misregistration on the accuracy of remotely sensed change detection, IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1566–1577.
  • Eismann M.T., Hardie R.C., (2008), Hyperspectral Resolution Enhancement Using High-Resolution Multispectral Imagery With Arbitrary Response Functions, IEEE Transactions on Geoscience and Remote Sensing, 43(3), 455-465.
  • Fookes C., Bennamoun M., (2002), The Use of Mutual Information for Rigid Medical Image Registration: A Review, 2002 IEEE Conference on Systems, Man and Cybernetics, Cilt.4, October 6-9, 2002, Hammamet - Tunisia.
  • Geary R.C., (1954), The Contiguity Ratio and Statistical Mapping, The Incorporated Statistician, 5(3),115–145.
  • Griffth D.A., (2003), Spatial Autocorrelation and Spatial Filtering, Springer Berlin, Germany.
  • Gruen A., (2012), Development and status of Image matching in Photogrammetry, The Photogrammetric Record, 27(137), 36– 57.
  • Inglada J., Giros A., (2004), On the Possibility of Automatic Multisensor Image Registration, IEEE Transactions on Geoscience and Remote Sensing, 42(10), 2104-2120.
  • Keller Y., Averbuch A., (2007), A projection-based extension to phase correlation image alignment, Signal Processing, 87(1), 124-133.
  • Ling, Y., Ehlers, M., Usery, E.L., Madden, M., (2008), Effects of spatial resolution ratio in image fusion, International Journal of Remote Sensing, 29(7), 2157-2167.
  • Mitianoudis N., Stathaki T., (2007), Pixel-based and region-based image fusion schemes using ICA bases, Information Fusion, 8, 131–142.
  • Pluim J.P.W., Maintz J.B.A., Viergever M.A., (2003), Mutual- Information-Based Registration of Medical Images: A Review, IEEE Transaction on Medical Imaging, 22, 986-1004.
  • Roshni V.S., Revathy DR. K., (2008), Using mutual information and cross correlation as metrics for registration of images, Journal of Theoretical and Applied Information Technology, 4(6), 474-481.
  • Suganya R., Priyadharsini K., Rajaram Dr. S., (2010), Intensity Based Image Registration by Maximization of Mutual Information, International Journal of Computer Applications, 1(20), 1-5.
  • Stone H.S., Orchard M.T., Chang E.-C., Martucci S.A., (2001), A fast direct Fourier-based algorithm for subpixel registration of image, IEEE Transactions on Geoscience and Remote Sensing, 39(10), 2235-2243.
  • Thomas C., T. Ranchin T., Wald L., Chanussot L., (2008), Synthesis of Multispectral Images to High Spatial Resolution A Critical Review of Fusion Methods Based on Remote Sensing Physics, IEEE Transactions in Geoscienceand Remote Sensing, 46(5), 1301-1312.
  • Url-1, Hyperion Sensor, USGS EO-1 Website, http://eo1.usgs.gov/, [Erişim; Kasım 2012].
  • Url-2, CHRIS Proba Sensor, Proba – Earthnet Online website, https://earth.esa.int/web/guest/missions/esa-operational-eo- missions/proba, [Erişim; Kasım 2012].
  • Url-3: GeoEye Satellites, http://www.geoeye.com/CorpSite/ products/earth-imagery/geoeye-satellites.aspx, [Erişim; Kasım 2012].
  • Wyawahare M.V., Pradeep D., Patil M., Abhyankar H.K., (2009), Image Registration Techniques: An overview, International Journal of Signal Processing, Image Processing and Pattern Recognition, 2(3), 11-28.
  • Yan H., Li J.G., (2008), Robust Phase Correlation based feature matching for image co-registration and DEM generation, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXVII, Part B7, 1751- 1756.
  • Yokoya N., Yairi T., Iwasaki A., (2012), Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion, IEEE Transactions on Geoscience and Remote Sensing, 50(2), 528-537.
  • Zitova B., Flusser J., (2003), Image registration methods: a survey, Image and Vision Computing, 21, 977-1000.
  • Zhukov B., Oertel D., Lanzl F., Reinhackel G., (1999), Unmixing-Based Multisensor Multiresolution Image Fusion, IEEE Transactions in Geoscience and Remote Sensing, 37(3), 1212-1226.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Deniz Gerçek Bu kişi benim

Davut Çeşmeci Bu kişi benim

Mehmet Kemal Güllü Bu kişi benim

Alp Ertürk Bu kişi benim

Sarp Ertürk Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2012
Yayımlandığı Sayı Yıl 2012 Sayı: 106

Kaynak Göster

APA Gerçek, D., Çeşmeci, D., Güllü, M. K., Ertürk, A., vd. (2012). Farklı alıcılardan elde edilen uydu görüntülerinin çakıştırılmasında başarım artırma ve değerlendirme ölçütleri. Jeodezi Ve Jeoinformasyon Dergisi(106), 131-137. https://doi.org/10.9733/jgg.251212.1t
AMA Gerçek D, Çeşmeci D, Güllü MK, Ertürk A, Ertürk S. Farklı alıcılardan elde edilen uydu görüntülerinin çakıştırılmasında başarım artırma ve değerlendirme ölçütleri. hkmojjd. Aralık 2012;(106):131-137. doi:10.9733/jgg.251212.1t
Chicago Gerçek, Deniz, Davut Çeşmeci, Mehmet Kemal Güllü, Alp Ertürk, ve Sarp Ertürk. “Farklı alıcılardan Elde Edilen Uydu görüntülerinin çakıştırılmasında başarım artırma Ve değerlendirme ölçütleri”. Jeodezi Ve Jeoinformasyon Dergisi, sy. 106 (Aralık 2012): 131-37. https://doi.org/10.9733/jgg.251212.1t.
EndNote Gerçek D, Çeşmeci D, Güllü MK, Ertürk A, Ertürk S (01 Aralık 2012) Farklı alıcılardan elde edilen uydu görüntülerinin çakıştırılmasında başarım artırma ve değerlendirme ölçütleri. Jeodezi ve Jeoinformasyon Dergisi 106 131–137.
IEEE D. Gerçek, D. Çeşmeci, M. K. Güllü, A. Ertürk, ve S. Ertürk, “Farklı alıcılardan elde edilen uydu görüntülerinin çakıştırılmasında başarım artırma ve değerlendirme ölçütleri”, hkmojjd, sy. 106, ss. 131–137, Aralık 2012, doi: 10.9733/jgg.251212.1t.
ISNAD Gerçek, Deniz vd. “Farklı alıcılardan Elde Edilen Uydu görüntülerinin çakıştırılmasında başarım artırma Ve değerlendirme ölçütleri”. Jeodezi ve Jeoinformasyon Dergisi 106 (Aralık 2012), 131-137. https://doi.org/10.9733/jgg.251212.1t.
JAMA Gerçek D, Çeşmeci D, Güllü MK, Ertürk A, Ertürk S. Farklı alıcılardan elde edilen uydu görüntülerinin çakıştırılmasında başarım artırma ve değerlendirme ölçütleri. hkmojjd. 2012;:131–137.
MLA Gerçek, Deniz vd. “Farklı alıcılardan Elde Edilen Uydu görüntülerinin çakıştırılmasında başarım artırma Ve değerlendirme ölçütleri”. Jeodezi Ve Jeoinformasyon Dergisi, sy. 106, 2012, ss. 131-7, doi:10.9733/jgg.251212.1t.
Vancouver Gerçek D, Çeşmeci D, Güllü MK, Ertürk A, Ertürk S. Farklı alıcılardan elde edilen uydu görüntülerinin çakıştırılmasında başarım artırma ve değerlendirme ölçütleri. hkmojjd. 2012(106):131-7.