Construction and Classification of Complete $(k,3)$-arcs from a Ceva 6-Figure in $PG(2,4)$
Yıl 2025,
Cilt: 7 Sayı: 2, 46 - 51, 29.12.2025
Elif Altıntaş Kahriman
,
Ayşe Bayar
Öz
This study investigates complete $(k,3)$-arcs generated from a given Ceva 6-figure in the projective plane $PG(2,4)$. The analysis reveals a unique complete $(7,3)$-arc obtained by adding the center point of the Ceva 6-figure, forming a Fano subplane, and eight distinct complete $(9,3)$-arcs constructed by adjoining three points on distinct 2-secant lines. No complete $(8,3)$-arc constructed from the given Ceva 6-figure exists. These results emphasize the combinatorial significance of Ceva-based configurations in finite projective planes and contribute to the systematic understanding of arc structures in finite geometry.
Kaynakça
-
Hirschfeld, J. W. P., & Thas, J. A. (2016). General Galois geometries. Springer Monographs in Mathematics, Springer-Verlag, London.
-
Bayar, A., Akca, Z., Altıntaş , E., & Ekmekçi, S. (2016). On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9. New Trends in Mathematical Science, 4(4), 266–275.
-
Ekmekçi, S., Bayar, A., Altintas, E., & Akça, Z. (2016). On the complete (k,2)-arcs of the Hall plane of order 9. International Journal of Advanced Research in Computer Science and Software Engineering, 6(10), 282–288.
-
Altıntaş Kahriman, E., & Bayar, A.(2024). Investigating incomplete (7,3)-arcs and their extensions in PG(2,5): A study on secants and complete quadrangles. 5th Bilsel International World Scientific and Research Congress, İstanbul, (p. 536–545).
-
Altıntaş Kahriman, E., & Bayar, A. (2024). An algorithm for constructing (k,2)-arcs containing triangle and quadrangle in PG(2,4). 5th Bilsel International Gordion Scientific Researches Congress, Ankara, (p. 987–997).
-
Danos, V., & Regnier L. (1989). The structure of multiplicatives. Arch Math Logic, 28, 181–203.
-
Benitez, J. (2007). A unified proof of Ceva and Menelaus’ theorems using projective geometry. Journal of Geometry and Graphics, 11(1), 39–44.
-
Nicolae, V. (2020). On the Ceva’s and Menelaus’s theorems. Rom. J. Phys., 5(2), 43–50.
-
Funk, B. K. (2008). Ceva and Menelaus in projective geometry. ProQuest Dissertations & Theses, University of Louisuille.
-
Kaya, R., & Çiftçi S. (1985). On Menelaus and Ceva 6-figures in Moufang projective planes. Geom. Dedicata, 19(3), 295–296.
-
Bayar, A., & Ekmekçi, S. (2014). On the Menelaus and Ceva 6-figures in the fibered projective planes. Abstr. Appl. Anal., 1–5.
-
Akça, Z., Bayar, A., & Ekmekçi, S. (2020). On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 891–899.
-
Hirschfeld, J. W. P., & Voloch, J. F. (2015). Group-arcs of prime power order on cubic curves. Finite Geometry and Combinatorics, 191, 177–185.
-
Hirschfeld, J. W. P., & Pichanick, E. V. D. (2016). Bounds for arcs of arbitrary degree in finite Desarguesian planes. J Comb Des, 24(4), 184–196.
-
Ekmekçi, S., Bayar, A., & Akça, Z. (2022). On the projective planes in projective space PG(4,4). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 38(3), 519–524.
$PG(2,4)$ Projektif Düzleminde Ceva 6-Figüründen Elde Edilen Tam $(k,3)$-arkların İnşası ve Sınıflandırılması
Yıl 2025,
Cilt: 7 Sayı: 2, 46 - 51, 29.12.2025
Elif Altıntaş Kahriman
,
Ayşe Bayar
Öz
Bu çalışma, $PG(2,4)$ projektif düzleminde verilen bir Ceva 6-figüründen üretilen tam $(k,3)$-arkları araştırmaktadır. Yapılan analiz, Ceva 6-figürünün merkez noktasının eklenmesiyle bir Fano alt-düzlemi oluşturan tek bir tam $(7,3)$-arkın elde edildiğini ve farklı 2-kesen doğrular üzerinde yer alan üç noktanın eklenmesiyle sekiz farklı tam $(9,3)$-arkın oluşturulabildiğini göstermektedir. Verilen Ceva 6-figüründen türetilmiş herhangi bir tam $(8,3)$-arkın var olmadığı da belirlenmiştir. Bu sonuçlar, sonlu projektif düzlemlerde Ceva temelli konfigürasyonların kombinatoryal önemini vurgulamakta ve sonlu geometride ark yapılarının sistematik olarak anlaşılmasına katkı sağlamaktadır.
Kaynakça
-
Hirschfeld, J. W. P., & Thas, J. A. (2016). General Galois geometries. Springer Monographs in Mathematics, Springer-Verlag, London.
-
Bayar, A., Akca, Z., Altıntaş , E., & Ekmekçi, S. (2016). On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9. New Trends in Mathematical Science, 4(4), 266–275.
-
Ekmekçi, S., Bayar, A., Altintas, E., & Akça, Z. (2016). On the complete (k,2)-arcs of the Hall plane of order 9. International Journal of Advanced Research in Computer Science and Software Engineering, 6(10), 282–288.
-
Altıntaş Kahriman, E., & Bayar, A.(2024). Investigating incomplete (7,3)-arcs and their extensions in PG(2,5): A study on secants and complete quadrangles. 5th Bilsel International World Scientific and Research Congress, İstanbul, (p. 536–545).
-
Altıntaş Kahriman, E., & Bayar, A. (2024). An algorithm for constructing (k,2)-arcs containing triangle and quadrangle in PG(2,4). 5th Bilsel International Gordion Scientific Researches Congress, Ankara, (p. 987–997).
-
Danos, V., & Regnier L. (1989). The structure of multiplicatives. Arch Math Logic, 28, 181–203.
-
Benitez, J. (2007). A unified proof of Ceva and Menelaus’ theorems using projective geometry. Journal of Geometry and Graphics, 11(1), 39–44.
-
Nicolae, V. (2020). On the Ceva’s and Menelaus’s theorems. Rom. J. Phys., 5(2), 43–50.
-
Funk, B. K. (2008). Ceva and Menelaus in projective geometry. ProQuest Dissertations & Theses, University of Louisuille.
-
Kaya, R., & Çiftçi S. (1985). On Menelaus and Ceva 6-figures in Moufang projective planes. Geom. Dedicata, 19(3), 295–296.
-
Bayar, A., & Ekmekçi, S. (2014). On the Menelaus and Ceva 6-figures in the fibered projective planes. Abstr. Appl. Anal., 1–5.
-
Akça, Z., Bayar, A., & Ekmekçi, S. (2020). On the intuitionistic fuzzy projective Menelaus and Ceva’s conditions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1), 891–899.
-
Hirschfeld, J. W. P., & Voloch, J. F. (2015). Group-arcs of prime power order on cubic curves. Finite Geometry and Combinatorics, 191, 177–185.
-
Hirschfeld, J. W. P., & Pichanick, E. V. D. (2016). Bounds for arcs of arbitrary degree in finite Desarguesian planes. J Comb Des, 24(4), 184–196.
-
Ekmekçi, S., Bayar, A., & Akça, Z. (2022). On the projective planes in projective space PG(4,4). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 38(3), 519–524.