We consider the existence of smooth projective curves embedded over a fixed finite field $\mathbb{F}_q$ and such that their ratio $\#X(\mathbb {F}_q)/\deg(X)$ is large. We discuss the geometry of curves computing the Iihara constants $A(q)$ and $A^-(q)$ and relate it to upper and lower bound of the Homma constants $D(q)$ and $D^-(q)$ .
Finite field curve over a finite field curves in projective spaces
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 24 Temmuz 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 4 Sayı: 1 |