Araştırma Makalesi
BibTex RIS Kaynak Göster

On The Parallel Ruled Surfaces With B-Darboux Frame

Yıl 2024, Cilt: 6 Sayı: 2, 13 - 25, 31.12.2024

Öz

In this work, the geometric properties of parallel ruled surfaces associated with the B-Darboux frame (BDF) in $E%
%TCIMACRO{\U{b3}}%
%BeginExpansion
{{}^3}%
%EndExpansion$ are introduced. Firstly, these surfaces are presented, and their main characteristic properties, such as developability, stress points and dispersion parameter, are analyzed. The paper presents a comprehensive analysis of how these surfaces are constructed and describes the conditions under which they preserve certain geometrical properties with the B-Darboux frame in Euclidean 3-space. These results contribute to a much better understanding of the theory of parallel ruled surfaces (PRS) with regard to the B-Darboux frame and provide insights into potential applications in various fields of geometry and mathematical modeling.

Kaynakça

  • Hlavatý, V., & Pinl, M. (1945). Differentielle liniengeometrie. Uitg P. Noorfhoff, Groningen.
  • Hoschek, J. (1973). Integralinvarianten von Regelflächen. Archiv der Mathematik, 24, 218–224.
  • Yoon, D. W. (2008). Some properties of parallel surfaces in Euclidean 3-spaces, Honam Mathematical Journal, 30(4), 637–644.
  • Ünlütürk, Y., Çimdiker, M., & Ekici, C. (2016). Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3-space. Communication in Mathematical Modeling and Applications, 1(1), 26–43.
  • Ravani, B., & Ku, T. S. (1991). Bertrand offsets of ruled and developable surfaces. Computer-Aided Design, 23(2), 145–152.
  • Bloomenthal, J. (1990). Calculation of reference frames along a space curve. Graphics Gems, 1, 567–571.
  • Doğan, F., & Yaylı, Y. (2012). Tubes with Darboux frame. International Journal of Contemporary Mathematical Sciences, 7(16), 751–758.
  • Klok, F. (1986). Two moving coordinate frames for sweeping along a 3D trajectory. Computer Aided Geometric Design, 3(3), 217–229.
  • Wang, W., Jüttler, B., Zheng, D., & Liu, Y. (2008). Computation of rotation minimizing frames. ACM Transactions on Graphics (TOG), 27(1), 1–18.
  • do Carmo, M. P. (1976). Differential geometry of curves and surfaces. Prentice Hall, Englewood Cliffs, New Jersey.
  • Bishop, R. L. (1975). There is more than one way to frame a curve. The American Mathematical Monthly, 82(3), 246-251.
  • Dede, M,. Ekici, C., & Görgülü, A. (2015). Directional q-frame along a space curve. International Journal of Advanced Research in Computer Science and Software Engineering, 5(12), 775–780.
  • Dede, M., Ekici, C., & Tozak, H. (2015). Directional tubular surfaces. International Journal of Algebra, 9(12), 527–535.
  • O’Neill, B. (1996). Elementary differential geometry. Academic Press Inc, New York.
  • Darboux, G. (1896). Lec¸ons sur la théorie générale des surfaces I-II-III-IV. Gauthier-Villars, Paris.
  • Şentürk, G. Y., & Yüce, S. (2015). Characteristic properties of the ruled surface with Darboux frame in E3. Kuwait Journal of Science, 42(2), 14–33.
  • Ekici, C., Uğur Kaymanlı G., & Okur, S. (2021). A new characterization of ruled surfaces according to q-frame vectors in Euclidean 3-space. International Journal of Mathematical Combinatorics, 3, 20–31.
  • Ekici Coşkun, A., & Akça, Z. (2023). The ruled surfaces generated by quasi-vectors in E4 space. Hagia Sophia Journal of Geometry, 5(2), 6–17.
  • Uğur Kaymanlı G., Ekici, C., & Ünlütürk, Y. (2022). Constant angle ruled surfaces due to the Bishop frame in Minkowski 3-space. Journal of Science and Arts, 22(1), 105–114.
  • Dede, M., & Ekici, C. (2017). B-Darboux frame of a surface. International Conference on Applied Sciences, Engineering and Mathematics (IBU-ICASEM2017), (p. 30).
  • Dede, M., Çimdiker Aslan, M., & Ekici, C. (2021). On a variational problem due to the B-Darboux frame in Euclidean 3-space. Mathematical Methods in the Applied Sciences, 44(17), 12630–12639.
  • Şentürk, G. Y., & Yüce, S. (2019). On the evolute offsets of ruled surface using the Darboux frame. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(2), 1256–1264.
  • Uğur Kaymanlı, G. (2020). Characterization of the evolute offset of ruled surfaces with B-Darboux frame. Journal of New Theory, 33, 50–55.
  • Solouma, E. M., & Al-Dayel, I. (2021). Harmonic evolute surface of tubular surfaces via B-Darboux frame in Euclidean 3-space. Advances in Mathematical Physics, Article ID 5269655, 7 pages.
  • Kühnel, W. (2002). Differential geometry: curves-surfaces-manifolds. American Mathematical Society.
  • Hacısalihoğlu, H. H. (1983). Differential geometry (in Turkish), İnönü Üniversity Faculty of Science Publications.
  • Abbena, E., Salamon, S., & Gray, A. (2006). Modern differential geometry of curves and surfaces with Mathematica. Chapman and Hall/CRC.
  • Savcı, Ü. Z. (2011). On the parallel ruled Weingarten surfaces in 3-dimensional Euclid space (in Turkish). Doctoral Dissertation, Eskişehir Osmangazi University, Eskişehir.
Yıl 2024, Cilt: 6 Sayı: 2, 13 - 25, 31.12.2024

Öz

Kaynakça

  • Hlavatý, V., & Pinl, M. (1945). Differentielle liniengeometrie. Uitg P. Noorfhoff, Groningen.
  • Hoschek, J. (1973). Integralinvarianten von Regelflächen. Archiv der Mathematik, 24, 218–224.
  • Yoon, D. W. (2008). Some properties of parallel surfaces in Euclidean 3-spaces, Honam Mathematical Journal, 30(4), 637–644.
  • Ünlütürk, Y., Çimdiker, M., & Ekici, C. (2016). Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3-space. Communication in Mathematical Modeling and Applications, 1(1), 26–43.
  • Ravani, B., & Ku, T. S. (1991). Bertrand offsets of ruled and developable surfaces. Computer-Aided Design, 23(2), 145–152.
  • Bloomenthal, J. (1990). Calculation of reference frames along a space curve. Graphics Gems, 1, 567–571.
  • Doğan, F., & Yaylı, Y. (2012). Tubes with Darboux frame. International Journal of Contemporary Mathematical Sciences, 7(16), 751–758.
  • Klok, F. (1986). Two moving coordinate frames for sweeping along a 3D trajectory. Computer Aided Geometric Design, 3(3), 217–229.
  • Wang, W., Jüttler, B., Zheng, D., & Liu, Y. (2008). Computation of rotation minimizing frames. ACM Transactions on Graphics (TOG), 27(1), 1–18.
  • do Carmo, M. P. (1976). Differential geometry of curves and surfaces. Prentice Hall, Englewood Cliffs, New Jersey.
  • Bishop, R. L. (1975). There is more than one way to frame a curve. The American Mathematical Monthly, 82(3), 246-251.
  • Dede, M,. Ekici, C., & Görgülü, A. (2015). Directional q-frame along a space curve. International Journal of Advanced Research in Computer Science and Software Engineering, 5(12), 775–780.
  • Dede, M., Ekici, C., & Tozak, H. (2015). Directional tubular surfaces. International Journal of Algebra, 9(12), 527–535.
  • O’Neill, B. (1996). Elementary differential geometry. Academic Press Inc, New York.
  • Darboux, G. (1896). Lec¸ons sur la théorie générale des surfaces I-II-III-IV. Gauthier-Villars, Paris.
  • Şentürk, G. Y., & Yüce, S. (2015). Characteristic properties of the ruled surface with Darboux frame in E3. Kuwait Journal of Science, 42(2), 14–33.
  • Ekici, C., Uğur Kaymanlı G., & Okur, S. (2021). A new characterization of ruled surfaces according to q-frame vectors in Euclidean 3-space. International Journal of Mathematical Combinatorics, 3, 20–31.
  • Ekici Coşkun, A., & Akça, Z. (2023). The ruled surfaces generated by quasi-vectors in E4 space. Hagia Sophia Journal of Geometry, 5(2), 6–17.
  • Uğur Kaymanlı G., Ekici, C., & Ünlütürk, Y. (2022). Constant angle ruled surfaces due to the Bishop frame in Minkowski 3-space. Journal of Science and Arts, 22(1), 105–114.
  • Dede, M., & Ekici, C. (2017). B-Darboux frame of a surface. International Conference on Applied Sciences, Engineering and Mathematics (IBU-ICASEM2017), (p. 30).
  • Dede, M., Çimdiker Aslan, M., & Ekici, C. (2021). On a variational problem due to the B-Darboux frame in Euclidean 3-space. Mathematical Methods in the Applied Sciences, 44(17), 12630–12639.
  • Şentürk, G. Y., & Yüce, S. (2019). On the evolute offsets of ruled surface using the Darboux frame. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(2), 1256–1264.
  • Uğur Kaymanlı, G. (2020). Characterization of the evolute offset of ruled surfaces with B-Darboux frame. Journal of New Theory, 33, 50–55.
  • Solouma, E. M., & Al-Dayel, I. (2021). Harmonic evolute surface of tubular surfaces via B-Darboux frame in Euclidean 3-space. Advances in Mathematical Physics, Article ID 5269655, 7 pages.
  • Kühnel, W. (2002). Differential geometry: curves-surfaces-manifolds. American Mathematical Society.
  • Hacısalihoğlu, H. H. (1983). Differential geometry (in Turkish), İnönü Üniversity Faculty of Science Publications.
  • Abbena, E., Salamon, S., & Gray, A. (2006). Modern differential geometry of curves and surfaces with Mathematica. Chapman and Hall/CRC.
  • Savcı, Ü. Z. (2011). On the parallel ruled Weingarten surfaces in 3-dimensional Euclid space (in Turkish). Doctoral Dissertation, Eskişehir Osmangazi University, Eskişehir.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Makaleler
Yazarlar

Mustafa Dede 0000-0003-2652-637X

Hatice Tozak 0000-0003-1383-0276

Cumali Ekici 0000-0002-3247-5727

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 23 Ekim 2024
Kabul Tarihi 13 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Dede, M., Tozak, H., & Ekici, C. (2024). On The Parallel Ruled Surfaces With B-Darboux Frame. Hagia Sophia Journal of Geometry, 6(2), 13-25.