[1] R. Bělohlávek, Fuzzy Relation Systems, Foundation and Principles, Kluwer Academic,
Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 2002.
[2] F. Borceux, Handbook of Categorical Algebra, Vol.2, Cambridge University Press.
1994.
[27] G. Preuss, The Theory of Topological Structures, D. Reidel Publishing Company,
Dordrecht, Boston, Lancaster, Tokyo, 1998.
[28] D. Verity, Enriched categories, internal categories and change of base, Repr. Theory
Appl. Categ. 20, 1266, 2011.
[29] W. Yao, On $L$-fuzzifying convergence spaces, Iran. J. Fuzzy Syst. 6 (1), 63–80, 2009.
[30] Q. Yu and J.M. Fang, The category of $\top$-convergence spaces and its Cartesian closedness,
Iran. J. Fuzzy Syst. 14, 121–138, 2017.
[31] Y.L. Yue and J.M. Fang, The $\top$-filter monad and its applications, Fuzzy Sets Syst.
382, 79–97, 2020.
[32] L. Zhang and B. Pang, Monoidal closedness of the category of $\top$-semiuniform convergence
spaces, Hacet. J. Math. Stat. 51 (5), 1348–1370, 2022.
[33] L. Zhang and B. Pang, A new approach to lattice-valued convergence groups via $\top$-
filters, Fuzzy Sets Syst. 455, 198–221, 2023.
[34] L. Zhang and B. Pang, Convergence structures in $(L,M)$-fuzzy convex spaces, Filomat,
37 (9), 2859–2877, 2023.
Subcategories of the category of $\top$-convergence spaces
$\top$-convergence structures serve as an important tool to describe fuzzy topology. This paper aims to give further investigations on $\top$-convergence structures. Firstly, several types of $\top$-convergence structures are introduced, including Kent $\top$-convergence structures, $\top$-limit structures and principal $\top$-convergence structures, and their mutual categorical relationships as well as their own categorical properties are studied. Secondly, by changing of the underlying lattice, the ``change of base" approach is applied to $\top$-convergence structures and the relationships between $\top$-convergence structures with respect to different underlying lattices are demonstrated.
[1] R. Bělohlávek, Fuzzy Relation Systems, Foundation and Principles, Kluwer Academic,
Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 2002.
[2] F. Borceux, Handbook of Categorical Algebra, Vol.2, Cambridge University Press.
1994.
[27] G. Preuss, The Theory of Topological Structures, D. Reidel Publishing Company,
Dordrecht, Boston, Lancaster, Tokyo, 1998.
[28] D. Verity, Enriched categories, internal categories and change of base, Repr. Theory
Appl. Categ. 20, 1266, 2011.
[29] W. Yao, On $L$-fuzzifying convergence spaces, Iran. J. Fuzzy Syst. 6 (1), 63–80, 2009.
[30] Q. Yu and J.M. Fang, The category of $\top$-convergence spaces and its Cartesian closedness,
Iran. J. Fuzzy Syst. 14, 121–138, 2017.
[31] Y.L. Yue and J.M. Fang, The $\top$-filter monad and its applications, Fuzzy Sets Syst.
382, 79–97, 2020.
[32] L. Zhang and B. Pang, Monoidal closedness of the category of $\top$-semiuniform convergence
spaces, Hacet. J. Math. Stat. 51 (5), 1348–1370, 2022.
[33] L. Zhang and B. Pang, A new approach to lattice-valued convergence groups via $\top$-
filters, Fuzzy Sets Syst. 455, 198–221, 2023.
[34] L. Zhang and B. Pang, Convergence structures in $(L,M)$-fuzzy convex spaces, Filomat,
37 (9), 2859–2877, 2023.
Gao, Y., & Pang, B. (2024). Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics, 53(1), 88-106. https://doi.org/10.15672/hujms.1205089
AMA
Gao Y, Pang B. Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics. February 2024;53(1):88-106. doi:10.15672/hujms.1205089
Chicago
Gao, Yuan, and Bin Pang. “Subcategories of the Category of $\top$-Convergence Spaces”. Hacettepe Journal of Mathematics and Statistics 53, no. 1 (February 2024): 88-106. https://doi.org/10.15672/hujms.1205089.
EndNote
Gao Y, Pang B (February 1, 2024) Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics 53 1 88–106.
IEEE
Y. Gao and B. Pang, “Subcategories of the category of $\top$-convergence spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, pp. 88–106, 2024, doi: 10.15672/hujms.1205089.
ISNAD
Gao, Yuan - Pang, Bin. “Subcategories of the Category of $\top$-Convergence Spaces”. Hacettepe Journal of Mathematics and Statistics 53/1 (February 2024), 88-106. https://doi.org/10.15672/hujms.1205089.
JAMA
Gao Y, Pang B. Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53:88–106.
MLA
Gao, Yuan and Bin Pang. “Subcategories of the Category of $\top$-Convergence Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, 2024, pp. 88-106, doi:10.15672/hujms.1205089.
Vancouver
Gao Y, Pang B. Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53(1):88-106.