Research Article
BibTex RIS Cite
Year 2020, , 1397 - 1404, 06.08.2020
https://doi.org/10.15672/hujms.542574

Abstract

References

  • [1] D.D. Anderson, D. Bennis, B. Fahid and A. Shaiea, On n-trivial extensions of rings, Rocky Mountain. J. Math. 47, 2439–2511, 2017.
  • [2] A. Badawi, On abelian π-regular rings, Comm. Algebra, 25 (4), 1009–1021, 1997.
  • [3] G.F. Birkenmeier, H.E. Heatherly, and E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong, 102–129, 1993.
  • [4] G. Calugareanu, UU rings, Carpathian J. Math. 31 (2), 157–163, 2015.
  • [5] J. Cui and X. Yin, Rings with 2-UJ property, Comm. Algebra, 48 (4), 1382–1391, 2020.
  • [6] P. Danchev, Rings with Jacobson units, Toyama Math. J. 38, 61–74, 2016.
  • [7] P. Danchev and T.Y. Lam, Rings with unipotent units, Publ. Math. Debrecen, 88 (3-4), 449–466, 2016.
  • [8] P. Danchev and J. Matczuk, n-torsion clean rings, in: Rings, modules and codes, Contemp. Math. 727, Amer. Math. Soc. Providence, RI, 71–82, 2019.
  • [9] J. Han and W.K. Nicholson, Extension of clean rings, Comm. Algebra, 29 (6), 2589– 2595, 2001.
  • [10] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (6), 575– 580, 1948.
  • [11] M.T. Koşan, The p.p. property of trivial extensions, J. Algebra Appl. 14 (8), 1550124, 5 pp., 2015.
  • [12] M.T. Koşan, A. Leroy and J. Matczuk, On UJ-rings, Comm. Algebra, 46 (5), 2297– 2303, 2018.
  • [13] T.Y. Lam, A First Course in Noncommutative Rings (second Ed.), Springer Verlag, New York, 2001.
  • [14] J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc. 74, 384–409, 1953.
  • [15] M. Marianne, Rings of quotients of generalized matrix rings, Comm. Algebra, 15 (10), 1991–2015, 1987.
  • [16] W.K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (5), 1105–1120, 1976.
  • [17] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278, 1977.
  • [18] W.K. Nicholson, Strongly clean rings and Fittings lemma, Comm. Algebra, 27, 3583– 3592, 1999.
  • [19] S. Sahinkaya and T. Yildirim, UJ-endomorphism rings, The Mathematica Journal, 60 (83), 186–198, 2018.

Rings such that, for each unit u, u − u n belongs to the Jacobson radical

Year 2020, , 1397 - 1404, 06.08.2020
https://doi.org/10.15672/hujms.542574

Abstract

A ring R is said to be n-UJ if u − u n ∈ J(R) for each unit u of R, where n > 1 is a fixed integer. In this paper, the structure of n-UJ rings is studied under various conditions. Moreover, the n-UJ property is studied under some algebraic constructions. Mathematics Subject Classification (2010). 16N20, 16D60, 16U60, 16W10

References

  • [1] D.D. Anderson, D. Bennis, B. Fahid and A. Shaiea, On n-trivial extensions of rings, Rocky Mountain. J. Math. 47, 2439–2511, 2017.
  • [2] A. Badawi, On abelian π-regular rings, Comm. Algebra, 25 (4), 1009–1021, 1997.
  • [3] G.F. Birkenmeier, H.E. Heatherly, and E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong, 102–129, 1993.
  • [4] G. Calugareanu, UU rings, Carpathian J. Math. 31 (2), 157–163, 2015.
  • [5] J. Cui and X. Yin, Rings with 2-UJ property, Comm. Algebra, 48 (4), 1382–1391, 2020.
  • [6] P. Danchev, Rings with Jacobson units, Toyama Math. J. 38, 61–74, 2016.
  • [7] P. Danchev and T.Y. Lam, Rings with unipotent units, Publ. Math. Debrecen, 88 (3-4), 449–466, 2016.
  • [8] P. Danchev and J. Matczuk, n-torsion clean rings, in: Rings, modules and codes, Contemp. Math. 727, Amer. Math. Soc. Providence, RI, 71–82, 2019.
  • [9] J. Han and W.K. Nicholson, Extension of clean rings, Comm. Algebra, 29 (6), 2589– 2595, 2001.
  • [10] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (6), 575– 580, 1948.
  • [11] M.T. Koşan, The p.p. property of trivial extensions, J. Algebra Appl. 14 (8), 1550124, 5 pp., 2015.
  • [12] M.T. Koşan, A. Leroy and J. Matczuk, On UJ-rings, Comm. Algebra, 46 (5), 2297– 2303, 2018.
  • [13] T.Y. Lam, A First Course in Noncommutative Rings (second Ed.), Springer Verlag, New York, 2001.
  • [14] J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc. 74, 384–409, 1953.
  • [15] M. Marianne, Rings of quotients of generalized matrix rings, Comm. Algebra, 15 (10), 1991–2015, 1987.
  • [16] W.K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (5), 1105–1120, 1976.
  • [17] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278, 1977.
  • [18] W.K. Nicholson, Strongly clean rings and Fittings lemma, Comm. Algebra, 27, 3583– 3592, 1999.
  • [19] S. Sahinkaya and T. Yildirim, UJ-endomorphism rings, The Mathematica Journal, 60 (83), 186–198, 2018.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

M. Tamer Koşan 0000-0002-5071-4568

Truong Cong Quynh 0000-0002-0845-0175

Tülay Yıldırım 0000-0002-7289-5064

Jan žemlička This is me 0000-0003-3319-5193

Publication Date August 6, 2020
Published in Issue Year 2020

Cite

APA Koşan, M. T., Quynh, T. C., Yıldırım, T., žemlička, J. (2020). Rings such that, for each unit u, u − u n belongs to the Jacobson radical. Hacettepe Journal of Mathematics and Statistics, 49(4), 1397-1404. https://doi.org/10.15672/hujms.542574
AMA Koşan MT, Quynh TC, Yıldırım T, žemlička J. Rings such that, for each unit u, u − u n belongs to the Jacobson radical. Hacettepe Journal of Mathematics and Statistics. August 2020;49(4):1397-1404. doi:10.15672/hujms.542574
Chicago Koşan, M. Tamer, Truong Cong Quynh, Tülay Yıldırım, and Jan žemlička. “Rings Such That, for Each Unit U, U − U N Belongs to the Jacobson Radical”. Hacettepe Journal of Mathematics and Statistics 49, no. 4 (August 2020): 1397-1404. https://doi.org/10.15672/hujms.542574.
EndNote Koşan MT, Quynh TC, Yıldırım T, žemlička J (August 1, 2020) Rings such that, for each unit u, u − u n belongs to the Jacobson radical. Hacettepe Journal of Mathematics and Statistics 49 4 1397–1404.
IEEE M. T. Koşan, T. C. Quynh, T. Yıldırım, and J. žemlička, “Rings such that, for each unit u, u − u n belongs to the Jacobson radical”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, pp. 1397–1404, 2020, doi: 10.15672/hujms.542574.
ISNAD Koşan, M. Tamer et al. “Rings Such That, for Each Unit U, U − U N Belongs to the Jacobson Radical”. Hacettepe Journal of Mathematics and Statistics 49/4 (August 2020), 1397-1404. https://doi.org/10.15672/hujms.542574.
JAMA Koşan MT, Quynh TC, Yıldırım T, žemlička J. Rings such that, for each unit u, u − u n belongs to the Jacobson radical. Hacettepe Journal of Mathematics and Statistics. 2020;49:1397–1404.
MLA Koşan, M. Tamer et al. “Rings Such That, for Each Unit U, U − U N Belongs to the Jacobson Radical”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, 2020, pp. 1397-04, doi:10.15672/hujms.542574.
Vancouver Koşan MT, Quynh TC, Yıldırım T, žemlička J. Rings such that, for each unit u, u − u n belongs to the Jacobson radical. Hacettepe Journal of Mathematics and Statistics. 2020;49(4):1397-404.

Cited By


ON RINGS IN WHICH ALL UNITS CAN BE PRESENTED IN THE FORM 1+eR(1-e)
Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler
https://doi.org/10.20290/estubtdb.957366

Amalgamated Rings with n-UJ-Properties
Gazi University Journal of Science Part A: Engineering and Innovation
https://doi.org/10.54287/gujsa.1106287