Research Article
BibTex RIS Cite
Year 2021, , 24 - 32, 04.02.2021
https://doi.org/10.15672/hujms.638900

Abstract

References

  • [1] Y. Abramovich and C.D. Aliprantis, An Invitation to Operator Theory, American Mathematical Society, New York, 2003.
  • [2] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • [3] A. Aydın, Unbounded $p_\tau$-convergence in vector lattice normed by locally solid vector lattices, in: Academic Studies in Mathematics and Natural Sciences-2019/2, 118-134, IVPE, Cetinje-Montenegro, 2019.
  • [4] A. Aydın, Multiplicative order convergence in $f$-algebras, Hacet. J. Math. Stat. 49 (3), 998–1005, 2020.
  • [5] A. Aydın, E. Emel’yanov, N.E. Özcan, and M.A.A. Marabeh, Compact-like operators in lattice-normed spaces, Indag. Math. 2, 633-656, 2018.
  • [6] A. Aydın, E. Emel’yanov, N.E. Özcan, and M.A.A. Marabeh, Unbounded $p$-convergence in lattice-normed vector lattices, Sib. Adv. Math. 29, 153-181, 2019.
  • [7] A. Aydın, S.G. Gorokhova, and H. Gül, Nonstandard hulls of lattice-normed ordered vector spaces, Turkish J. Math. 42, 155-163, 2018.
  • [8] Y.A. Dabboorasad, E.Y. Emelyanov, and M.A.A. Marabeh, $u\tau$-Convergence in locally solid vector lattices, Positivity 22, 1065-1080, 2018.
  • [9] Y. Deng, M. O’Brien, and V.G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity 21, 963-974, 2017.
  • [10] N. Gao, V.G. Troitsky, and F. Xanthos, $Uo$-convergence and its applications to Cesáro means in Banach lattices, Israel J. Math. 220, 649-689, 2017.
  • [11] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, Math. Anal. Appl. 415, 931-947, 2014.
  • [12] C.B. Huijsmans and B.D. Pagter, Ideal theory in $f$-algebras, Trans. Amer. Math. Soc. 269, 225-245, 1982.
  • [13] B.D. Pagter, $f$-Algebras and Orthomorphisms, Ph.D. Dissertation, Leiden, 1981.
  • [14] V. Runde, A Taste of Topology, Springer, Berlin, 2005.
  • [15] V.G. Troitsky, Measures of non-compactness of operators on Banach lattices, Positivity 8, 165-178, 2004.
  • [16] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters- Noordhoff Scientific Publications, Groningen, 1967.
  • [17] A.C. Zaanen, Riesz Spaces II, The Netherlands: North-Holland Publishing Co., Amsterdam, 1983.

The multiplicative norm convergence in normed Riesz algebras

Year 2021, , 24 - 32, 04.02.2021
https://doi.org/10.15672/hujms.638900

Abstract

A net $(x_\alpha)_{\alpha\in A}$ in an $f$-algebra $E$ is called multiplicative order convergent to $x\in E$ if $\lvert x_\alpha-x\rvert\cdot u \rightarrow 0$ for all $u\in E_+$. This convergence was introduced and studied on $f$-algebras with the order convergence. In this paper, we study a variation of this convergence for normed Riesz algebras with respect to the norm convergence. A net $(x_\alpha)_{\alpha\in A}$ in a normed Riesz algebra $E$ is said to be multiplicative norm convergent to $x\in E$ if $\big\lVert \lvert x_\alpha-x\rvert\cdot u\big\rVert\to 0$ for each $u\in E_+$. We study this concept and investigate its relationship with the other convergences, and also we introduce the $mn$-topology on normed Riesz algebras.

References

  • [1] Y. Abramovich and C.D. Aliprantis, An Invitation to Operator Theory, American Mathematical Society, New York, 2003.
  • [2] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • [3] A. Aydın, Unbounded $p_\tau$-convergence in vector lattice normed by locally solid vector lattices, in: Academic Studies in Mathematics and Natural Sciences-2019/2, 118-134, IVPE, Cetinje-Montenegro, 2019.
  • [4] A. Aydın, Multiplicative order convergence in $f$-algebras, Hacet. J. Math. Stat. 49 (3), 998–1005, 2020.
  • [5] A. Aydın, E. Emel’yanov, N.E. Özcan, and M.A.A. Marabeh, Compact-like operators in lattice-normed spaces, Indag. Math. 2, 633-656, 2018.
  • [6] A. Aydın, E. Emel’yanov, N.E. Özcan, and M.A.A. Marabeh, Unbounded $p$-convergence in lattice-normed vector lattices, Sib. Adv. Math. 29, 153-181, 2019.
  • [7] A. Aydın, S.G. Gorokhova, and H. Gül, Nonstandard hulls of lattice-normed ordered vector spaces, Turkish J. Math. 42, 155-163, 2018.
  • [8] Y.A. Dabboorasad, E.Y. Emelyanov, and M.A.A. Marabeh, $u\tau$-Convergence in locally solid vector lattices, Positivity 22, 1065-1080, 2018.
  • [9] Y. Deng, M. O’Brien, and V.G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity 21, 963-974, 2017.
  • [10] N. Gao, V.G. Troitsky, and F. Xanthos, $Uo$-convergence and its applications to Cesáro means in Banach lattices, Israel J. Math. 220, 649-689, 2017.
  • [11] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, Math. Anal. Appl. 415, 931-947, 2014.
  • [12] C.B. Huijsmans and B.D. Pagter, Ideal theory in $f$-algebras, Trans. Amer. Math. Soc. 269, 225-245, 1982.
  • [13] B.D. Pagter, $f$-Algebras and Orthomorphisms, Ph.D. Dissertation, Leiden, 1981.
  • [14] V. Runde, A Taste of Topology, Springer, Berlin, 2005.
  • [15] V.G. Troitsky, Measures of non-compactness of operators on Banach lattices, Positivity 8, 165-178, 2004.
  • [16] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters- Noordhoff Scientific Publications, Groningen, 1967.
  • [17] A.C. Zaanen, Riesz Spaces II, The Netherlands: North-Holland Publishing Co., Amsterdam, 1983.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Abdullah Aydın 0000-0002-0769-5752

Publication Date February 4, 2021
Published in Issue Year 2021

Cite

APA Aydın, A. (2021). The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics, 50(1), 24-32. https://doi.org/10.15672/hujms.638900
AMA Aydın A. The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):24-32. doi:10.15672/hujms.638900
Chicago Aydın, Abdullah. “The Multiplicative Norm Convergence in Normed Riesz Algebras”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 24-32. https://doi.org/10.15672/hujms.638900.
EndNote Aydın A (February 1, 2021) The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics 50 1 24–32.
IEEE A. Aydın, “The multiplicative norm convergence in normed Riesz algebras”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 24–32, 2021, doi: 10.15672/hujms.638900.
ISNAD Aydın, Abdullah. “The Multiplicative Norm Convergence in Normed Riesz Algebras”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 24-32. https://doi.org/10.15672/hujms.638900.
JAMA Aydın A. The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics. 2021;50:24–32.
MLA Aydın, Abdullah. “The Multiplicative Norm Convergence in Normed Riesz Algebras”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 24-32, doi:10.15672/hujms.638900.
Vancouver Aydın A. The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):24-32.