We continue the study of freezing sets for digital images introduced in [L. Boxer and P.C. Staecker, Fixed point sets in digital topology, 1, Applied General Topology 2020; L. Boxer, Fixed point sets in digital topology, 2, Applied General Topology 2020; L. Boxer, Convexity and Freezing Sets in Digital Topology, Applied General Topology, 2021]. We prove methods for obtaining freezing sets for digital images $(X,c_i)$ for $X \subset \mathbb{Z}^2$ and $i \in \{1,2\}$. We give examples to show how these methods can lead to the determination of minimal freezing sets.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Publication Date | August 6, 2021 |
Published in Issue | Year 2021 |