Research Article
BibTex RIS Cite

Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions

Year 2019, Volume: 48 Issue: 1, 59 - 66, 01.02.2019

Abstract

In this paper, by using Green's functions for second order differential equations, we establish new Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions. By using such inequalities, we obtain sharp lower bounds for the eigenvalues of corresponding equations.

References

  • M.F. Aktas, Lyapunov-type inequalities for $n$-dimensional quasilinear systems, Electron. J. Differential Equations 67, 1-8, 2013.
  • M.F. Aktas, D. Çakmak and A. Tiryaki, A note on Tang and He’s paper, Appl. Math. Comput. 218, 4867-4871, 2012.
  • M.F. Aktas, D. Çakmak and A. Tiryaki, Lyapunov-type inequality for quasilinear systems with anti-periodic boundary conditions, J. Math. Inequal. 8, 313-320, 2014.
  • M.F. Aktas, D. Çakmak and A. Tiryaki, On the Lyapunov-type inequalities of a threepoint boundary value problem for third order linear differential equations, Appl. Math. Lett. 45, 1-6, 2015.
  • G. Borg, On a Liapounoff criterion of stability, Amer. J. Math. 71, 67-70, 1949.
  • A. Cabada, J.A. Cid and B. Maquez-Villamarin, Computation of Green’s functions for boundary value problems with Mathematica, Appl. Math. Comput. 219, 1919-1936, 2012.
  • D. Çakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput. 216, 368-373, 2010.
  • D. Çakmak, On Lyapunov-type inequality for a class of nonlinear systems, Math. Inequal. Appl. 16, 101-108, 2013.
  • D. Çakmak, M.F. Aktas and A. Tiryaki, Lyapunov-type inequalities for nonlinear systems involving the $(p_{1},p_{2},...,p_{n}) $-Laplacian, Electron. J. Differential Equations 128, 1-10, 2013.
  • D. Çakmak and A. Tiryaki, On Lyapunov-type inequality for quasilinear systems, Appl. Math. Comput. 216, 3584-3591, 2010.
  • D. Çakmak and A. Tiryaki, Lyapunov-type inequality for a class of Dirichlet quasilinear systems involving the $(p_{1},p_{2},...,p_{n}) $-Laplacian, J. Math. Anal. Appl. 369, 76-81, 2010.
  • P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964 an Birkhäuser, Boston 1982.
  • E.L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1926.
  • W.G. Kelley and A.C. Peterson, The Theory of Differential Equations, Classical and Qualitative, Springer, New York, 2010.
  • A. Liapunov, Probleme general de la stabilite du mouvement, Annales de la Faculte des Sciences de Toulouse pour les Sciences Mathematiques et les Sciences Physiques 2, 203-474, 1907.
  • A. Tiryaki, D. Çakmak and M.F. Aktas, Lyapunov-type inequalities for a certain class of nonlinear systems, Comput. Math. Appl. 64, 1804-1811, 2012.
  • A. Tiryaki, D. Çakmak and M.F. Aktas, Lyapunov-type inequalities for two classes of Dirichlet quasilinear systems, Math. Inequal. Appl. 17, 843-863, 2014.
  • A. Tiryaki, M. Ünal and D. Çakmak, Lyapunov-type inequalities for nonlinear systems, J. Math. Anal. Appl. 332, 497-511, 2007.
  • X. Yang, On inequalities of Lyapunov type, Appl. Math. Comput. 134, 293-300, 2003.
Year 2019, Volume: 48 Issue: 1, 59 - 66, 01.02.2019

Abstract

References

  • M.F. Aktas, Lyapunov-type inequalities for $n$-dimensional quasilinear systems, Electron. J. Differential Equations 67, 1-8, 2013.
  • M.F. Aktas, D. Çakmak and A. Tiryaki, A note on Tang and He’s paper, Appl. Math. Comput. 218, 4867-4871, 2012.
  • M.F. Aktas, D. Çakmak and A. Tiryaki, Lyapunov-type inequality for quasilinear systems with anti-periodic boundary conditions, J. Math. Inequal. 8, 313-320, 2014.
  • M.F. Aktas, D. Çakmak and A. Tiryaki, On the Lyapunov-type inequalities of a threepoint boundary value problem for third order linear differential equations, Appl. Math. Lett. 45, 1-6, 2015.
  • G. Borg, On a Liapounoff criterion of stability, Amer. J. Math. 71, 67-70, 1949.
  • A. Cabada, J.A. Cid and B. Maquez-Villamarin, Computation of Green’s functions for boundary value problems with Mathematica, Appl. Math. Comput. 219, 1919-1936, 2012.
  • D. Çakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput. 216, 368-373, 2010.
  • D. Çakmak, On Lyapunov-type inequality for a class of nonlinear systems, Math. Inequal. Appl. 16, 101-108, 2013.
  • D. Çakmak, M.F. Aktas and A. Tiryaki, Lyapunov-type inequalities for nonlinear systems involving the $(p_{1},p_{2},...,p_{n}) $-Laplacian, Electron. J. Differential Equations 128, 1-10, 2013.
  • D. Çakmak and A. Tiryaki, On Lyapunov-type inequality for quasilinear systems, Appl. Math. Comput. 216, 3584-3591, 2010.
  • D. Çakmak and A. Tiryaki, Lyapunov-type inequality for a class of Dirichlet quasilinear systems involving the $(p_{1},p_{2},...,p_{n}) $-Laplacian, J. Math. Anal. Appl. 369, 76-81, 2010.
  • P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964 an Birkhäuser, Boston 1982.
  • E.L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1926.
  • W.G. Kelley and A.C. Peterson, The Theory of Differential Equations, Classical and Qualitative, Springer, New York, 2010.
  • A. Liapunov, Probleme general de la stabilite du mouvement, Annales de la Faculte des Sciences de Toulouse pour les Sciences Mathematiques et les Sciences Physiques 2, 203-474, 1907.
  • A. Tiryaki, D. Çakmak and M.F. Aktas, Lyapunov-type inequalities for a certain class of nonlinear systems, Comput. Math. Appl. 64, 1804-1811, 2012.
  • A. Tiryaki, D. Çakmak and M.F. Aktas, Lyapunov-type inequalities for two classes of Dirichlet quasilinear systems, Math. Inequal. Appl. 17, 843-863, 2014.
  • A. Tiryaki, M. Ünal and D. Çakmak, Lyapunov-type inequalities for nonlinear systems, J. Math. Anal. Appl. 332, 497-511, 2007.
  • X. Yang, On inequalities of Lyapunov type, Appl. Math. Comput. 134, 293-300, 2003.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mustafa Fahri Aktaş

Devrim Çakmak

Publication Date February 1, 2019
Published in Issue Year 2019 Volume: 48 Issue: 1

Cite

APA Aktaş, M. F., & Çakmak, D. (2019). Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions. Hacettepe Journal of Mathematics and Statistics, 48(1), 59-66.
AMA Aktaş MF, Çakmak D. Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions. Hacettepe Journal of Mathematics and Statistics. February 2019;48(1):59-66.
Chicago Aktaş, Mustafa Fahri, and Devrim Çakmak. “Lyapunov-Type Inequalities for Third Order Linear Differential Equations With Two Points Boundary Conditions”. Hacettepe Journal of Mathematics and Statistics 48, no. 1 (February 2019): 59-66.
EndNote Aktaş MF, Çakmak D (February 1, 2019) Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions. Hacettepe Journal of Mathematics and Statistics 48 1 59–66.
IEEE M. F. Aktaş and D. Çakmak, “Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 1, pp. 59–66, 2019.
ISNAD Aktaş, Mustafa Fahri - Çakmak, Devrim. “Lyapunov-Type Inequalities for Third Order Linear Differential Equations With Two Points Boundary Conditions”. Hacettepe Journal of Mathematics and Statistics 48/1 (February 2019), 59-66.
JAMA Aktaş MF, Çakmak D. Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions. Hacettepe Journal of Mathematics and Statistics. 2019;48:59–66.
MLA Aktaş, Mustafa Fahri and Devrim Çakmak. “Lyapunov-Type Inequalities for Third Order Linear Differential Equations With Two Points Boundary Conditions”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 1, 2019, pp. 59-66.
Vancouver Aktaş MF, Çakmak D. Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions. Hacettepe Journal of Mathematics and Statistics. 2019;48(1):59-66.