Araştırma Makalesi
BibTex RIS Kaynak Göster

Distribution of zeros of sublinear dynamic equations with a damping term on time scales

Yıl 2016, Cilt: 45 Sayı: 2, 455 - 471, 01.04.2016

Öz

In this paper, for a second order sublinear dynamic equation with a
damping term we will study the lower bounds of the distance between
zeros of a solution and/or its derivatives and then establish some new
criteria for disconjugacy and disfocality. Our results present a slight
improvement to some results proved in the litrature. As a special case
when T = R, for a second order linear differential equation, we get some
results proved by Brown and Harris as a consequence of our results. The
results will be proved by employing the time scales Hölder inequality,
the time scales chain rule and some new dynamic Opial-type inequalities
designed and proved for this purpose. 

Kaynakça

  • Agarwal, R.P. and Pang, P.Y.H. Opial inequalities with Applications in Differential and Difference Equations, Kluwer, Dordrechet (1995).
  • Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, Mass, USA (2001).
  • Bohner, M. and Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston (2003).
  • Bohner, M. and Kaymakçalan, B. Opial Inequalities on time scales, Annal. Polon. Math. 77 (2001), 11-20.
  • Bohner, M., Clark, S. and Ridenhour, J. Lyapunov inequalities for time scales, J. Ineq. Appl. 7 (2002), 61-77.
  • Brown, R.C. and Hinton, D.B. Lyapunov inequalities and their applications, in: T. M. Rassias (Ed.), Survey on Classical Inequalities, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000), 1-25.
  • Brown, R.C. and Hinton, D.B. Opial’s inequality and oscillation of 2 nd order equations, Proc. Amer. Math. Soc. 125 (1997), 1123-1129.
  • Cheng, S. Lyapunov inequalities for differential and difference equations, Fasc. Math. 23 (1991) 25–41.
  • Cohn, J.H.E. Consecutive zeros of solutions of ordinary second order differential equations, J. Lond. Math. Soc. 2 (5) (1972), 465-468.
  • Harris, B. J. and Kong, Q. On the oscillation of differential equations with an oscillatory coefficient, Transc. Amer. Math. Soc. 347 (5) (1995), 1831-1839.
  • Hartman, P. Ordinary Differential Equations, Wiley, New York, (1964) and Birkhäuser, Boston (1982).
  • Hartman, P. and Wintner, A. On an oscillation criterion of de la Vallée Poussin, Quart. Appl. Math. 13 (1955), 330-332.
  • Karpuz, B., Kaymakçalan, B. and Öclan, Ö. A generalization of Opial’s inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11-18.
  • M. K. Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83 (1981), 486-494.
  • Lasota, A. A discrete boundary value problem, Annal. Polon. Math. 20 (1968), 183-190.
  • Lettenmeyer, F. Ueber die von einem punktausgehenden Integralkurven einer Differentialgleichung 2. Ordnung, Deutsche Math. 7 (1944), 56-74.
  • Lyapunov, A.M. Probleme général de la stabilité du mouvement, Ann. Math. Stud. 17 (1947), 203-474.
  • Mitrinović, D.S., Pečarić, J.E. and Fink, A.M. Classical and New Inequalities in Analysis, vol. 61, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1993).
  • Nehari, Z. On the zeros of solutions of second order linear differential equations, Amer. J. Math. 76 (1954), 689-697.
  • Opial, Z. Sur une inegalite, Annal. Polon. Math. 8 (1960), 29-32.
  • Opial, Z. Sur une inégalité de C. de La Vallée Poussin dans la théorie de l’équation différentielle linéaire du second ordre, Annal. Polon. Math. 6 (1959), 87-91.
  • Poussin, C. de la Vallée Sur l’équation différentielle linéaire du second ordre, J. Math. Pures Appl. 8 (1929), 125-144.
  • Saker, S.H. Applications of Opial inequalities on time scales on dynamic equations with damping terms, Math. Comp. Model. 58 (2013), 1777-1790. 471
  • Saker, S.H. Opial’s type inequalities on time scales and some applications, Annal. Polon. Math. 104 (2012), 243-260.
  • Saker, S.H. New inequalities of Opial’s type on time scales and some of their applications, Disc. Dynam. Nat. Soc. 2012 (2012), 1-23.
  • Saker, S.H. Some New Inequalities of Opial’s Type on Time Scales, Abs. Appl. Anal. 2012 (2012), 1-14.
  • Saker, S.H. Lyapunov inequalities for half-linear dynamic equations on time scales and disconjugacy, Dyn. Contin. Discrete Impuls. Syst. Ser. B, Appl. Algorithms 18 (2011), 149- 161.
  • Saker, S.H. Oscillation Theory of Dynamic Equations on Time Scales: Second and Third Orders, Lambert Academic Publishing, Germany (2010).
  • Saker, S.H. Some new disconjugacy criteria for second order differential equations with a middle term, Bull. Math. Soc. Sci. Math. Roum. 57 (1) (2014), 109-120.
  • Szmanda, B. The distance between the zeros of certain solutions of nth order linear differential equations (Polish), Fasciculi Math. Nr. 4 (1969), 65-70.
  • Tiryaki, A. Recent development of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl. 5 (2) (2010) 231-248.
  • Willett, D. Generalized de la Vallée Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. 14 (1971), 419-428.
Yıl 2016, Cilt: 45 Sayı: 2, 455 - 471, 01.04.2016

Öz

Kaynakça

  • Agarwal, R.P. and Pang, P.Y.H. Opial inequalities with Applications in Differential and Difference Equations, Kluwer, Dordrechet (1995).
  • Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, Mass, USA (2001).
  • Bohner, M. and Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston (2003).
  • Bohner, M. and Kaymakçalan, B. Opial Inequalities on time scales, Annal. Polon. Math. 77 (2001), 11-20.
  • Bohner, M., Clark, S. and Ridenhour, J. Lyapunov inequalities for time scales, J. Ineq. Appl. 7 (2002), 61-77.
  • Brown, R.C. and Hinton, D.B. Lyapunov inequalities and their applications, in: T. M. Rassias (Ed.), Survey on Classical Inequalities, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000), 1-25.
  • Brown, R.C. and Hinton, D.B. Opial’s inequality and oscillation of 2 nd order equations, Proc. Amer. Math. Soc. 125 (1997), 1123-1129.
  • Cheng, S. Lyapunov inequalities for differential and difference equations, Fasc. Math. 23 (1991) 25–41.
  • Cohn, J.H.E. Consecutive zeros of solutions of ordinary second order differential equations, J. Lond. Math. Soc. 2 (5) (1972), 465-468.
  • Harris, B. J. and Kong, Q. On the oscillation of differential equations with an oscillatory coefficient, Transc. Amer. Math. Soc. 347 (5) (1995), 1831-1839.
  • Hartman, P. Ordinary Differential Equations, Wiley, New York, (1964) and Birkhäuser, Boston (1982).
  • Hartman, P. and Wintner, A. On an oscillation criterion of de la Vallée Poussin, Quart. Appl. Math. 13 (1955), 330-332.
  • Karpuz, B., Kaymakçalan, B. and Öclan, Ö. A generalization of Opial’s inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11-18.
  • M. K. Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83 (1981), 486-494.
  • Lasota, A. A discrete boundary value problem, Annal. Polon. Math. 20 (1968), 183-190.
  • Lettenmeyer, F. Ueber die von einem punktausgehenden Integralkurven einer Differentialgleichung 2. Ordnung, Deutsche Math. 7 (1944), 56-74.
  • Lyapunov, A.M. Probleme général de la stabilité du mouvement, Ann. Math. Stud. 17 (1947), 203-474.
  • Mitrinović, D.S., Pečarić, J.E. and Fink, A.M. Classical and New Inequalities in Analysis, vol. 61, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1993).
  • Nehari, Z. On the zeros of solutions of second order linear differential equations, Amer. J. Math. 76 (1954), 689-697.
  • Opial, Z. Sur une inegalite, Annal. Polon. Math. 8 (1960), 29-32.
  • Opial, Z. Sur une inégalité de C. de La Vallée Poussin dans la théorie de l’équation différentielle linéaire du second ordre, Annal. Polon. Math. 6 (1959), 87-91.
  • Poussin, C. de la Vallée Sur l’équation différentielle linéaire du second ordre, J. Math. Pures Appl. 8 (1929), 125-144.
  • Saker, S.H. Applications of Opial inequalities on time scales on dynamic equations with damping terms, Math. Comp. Model. 58 (2013), 1777-1790. 471
  • Saker, S.H. Opial’s type inequalities on time scales and some applications, Annal. Polon. Math. 104 (2012), 243-260.
  • Saker, S.H. New inequalities of Opial’s type on time scales and some of their applications, Disc. Dynam. Nat. Soc. 2012 (2012), 1-23.
  • Saker, S.H. Some New Inequalities of Opial’s Type on Time Scales, Abs. Appl. Anal. 2012 (2012), 1-14.
  • Saker, S.H. Lyapunov inequalities for half-linear dynamic equations on time scales and disconjugacy, Dyn. Contin. Discrete Impuls. Syst. Ser. B, Appl. Algorithms 18 (2011), 149- 161.
  • Saker, S.H. Oscillation Theory of Dynamic Equations on Time Scales: Second and Third Orders, Lambert Academic Publishing, Germany (2010).
  • Saker, S.H. Some new disconjugacy criteria for second order differential equations with a middle term, Bull. Math. Soc. Sci. Math. Roum. 57 (1) (2014), 109-120.
  • Szmanda, B. The distance between the zeros of certain solutions of nth order linear differential equations (Polish), Fasciculi Math. Nr. 4 (1969), 65-70.
  • Tiryaki, A. Recent development of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl. 5 (2) (2010) 231-248.
  • Willett, D. Generalized de la Vallée Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. 14 (1971), 419-428.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Samir. H. Saker Bu kişi benim

Ramy. R. Mahmoud Bu kişi benim

Yayımlanma Tarihi 1 Nisan 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 45 Sayı: 2

Kaynak Göster

APA H. Saker, S., & Mahmoud, R. R. (2016). Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics, 45(2), 455-471.
AMA H. Saker S, Mahmoud RR. Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics. Nisan 2016;45(2):455-471.
Chicago H. Saker, Samir., ve Ramy. R. Mahmoud. “Distribution of Zeros of Sublinear Dynamic Equations With a Damping Term on Time Scales”. Hacettepe Journal of Mathematics and Statistics 45, sy. 2 (Nisan 2016): 455-71.
EndNote H. Saker S, Mahmoud RR (01 Nisan 2016) Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics 45 2 455–471.
IEEE S. H. Saker ve R. R. Mahmoud, “Distribution of zeros of sublinear dynamic equations with a damping term on time scales”, Hacettepe Journal of Mathematics and Statistics, c. 45, sy. 2, ss. 455–471, 2016.
ISNAD H. Saker, Samir. - Mahmoud, Ramy. R. “Distribution of Zeros of Sublinear Dynamic Equations With a Damping Term on Time Scales”. Hacettepe Journal of Mathematics and Statistics 45/2 (Nisan 2016), 455-471.
JAMA H. Saker S, Mahmoud RR. Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics. 2016;45:455–471.
MLA H. Saker, Samir. ve Ramy. R. Mahmoud. “Distribution of Zeros of Sublinear Dynamic Equations With a Damping Term on Time Scales”. Hacettepe Journal of Mathematics and Statistics, c. 45, sy. 2, 2016, ss. 455-71.
Vancouver H. Saker S, Mahmoud RR. Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics. 2016;45(2):455-71.