Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 49 Sayı: 1, 273 - 281, 06.02.2020
https://doi.org/10.15672/hujms.546988

Öz

Kaynakça

  • [1] A. Abdollahi, S.M.J. Amiri, and A.M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (1), 43–57, 2007.
  • [2] S.M.J. Amiri and H. Rostami, Centralizers and the maximum size of the pairwise noncommuting elements in finite groups, Hacet. J. Math Stat. 46 (2), 193–198, 2017.
  • [3] A.R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2), 139–146, 2000.
  • [4] A.R. Ashrafi, Counting the centralizers of some finite groups, J. Korean Comput. Appl. Math. 7 (1), 115–124, 2000.
  • [5] A.R. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput. 17 (12), 217–227, 2005.
  • [6] A.R. Ashrafi and B. Taeri, On finite groups with exactly seven element centralizers, J. Appl. Math. Comput. 22 (1-2), 403–410, 2006.
  • [7] S.M. Belcastro and G.J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (5), 366–374, 1994.
  • [8] Gr.G. Călugăreanu, The total number of subgroups of a finite Abelian group, Sci. Math. Jpn. 60 (1), 157–167, 2004.
  • [9] J. Dutta, A characterization of 4-centralizer groups, Chin. J. Math. (N.Y.) Article ID:871072, 2 pages, 2013.
  • [10] J. Dutta, On a problem posed by Belcastro and Sherman, Kyungpook Math. J. 56 (1), 121–123, 2016.
  • [11] M. Golasiński and D.L. Goncalves, On automorphisms of finite Abelian p-groups, Math. Slovaca 58 (4), 405–412, 2008.
  • [12] M.M. Nasrabadi and A. Gholamian, On finite n-Acentralizers groups, Comm. Algebra 43 (2), 378–383, 2015.
  • [13] R.K. Nath, Commutativity degree of a class of finite groups and consequences, Bull. Aust. Math. Soc. 88 (3), 448–452, 2013.
  • [14] R. Schmidt, Subgroup lattices of groups, De Gruyter Exp. Math., 14. Walter de Gruyter, 1994.
  • [15] M. Zarrin, On element-centralizers in finite groups, Arch. Math. (Basel) 93, 497–503, 2009.

Acentralizers of Abelian groups of rank 2

Yıl 2020, Cilt: 49 Sayı: 1, 273 - 281, 06.02.2020
https://doi.org/10.15672/hujms.546988

Öz

Let $G$ be a group. The Acentralizer of an automorphism $\alpha$ of $G$, is the subgroup of fixed points of $\alpha$, i.e.,  $C_G(\alpha)= \{g\in G \mid \alpha(g)=g\}$. We show that if $G$ is a  finite  Abelian  $p$-group of rank $2$, where $p$ is an odd prime, then the number of Acentralizers of $G$ is exactly the number of subgroups of $G$. More precisely, we show that for each  subgroup $U$ of $G$, there exists an automorphism $\alpha$ of $G$ such that $C_G(\alpha)=U$. Also we find the Acentralizers of infinite two-generator Abelian groups.

Kaynakça

  • [1] A. Abdollahi, S.M.J. Amiri, and A.M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (1), 43–57, 2007.
  • [2] S.M.J. Amiri and H. Rostami, Centralizers and the maximum size of the pairwise noncommuting elements in finite groups, Hacet. J. Math Stat. 46 (2), 193–198, 2017.
  • [3] A.R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2), 139–146, 2000.
  • [4] A.R. Ashrafi, Counting the centralizers of some finite groups, J. Korean Comput. Appl. Math. 7 (1), 115–124, 2000.
  • [5] A.R. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput. 17 (12), 217–227, 2005.
  • [6] A.R. Ashrafi and B. Taeri, On finite groups with exactly seven element centralizers, J. Appl. Math. Comput. 22 (1-2), 403–410, 2006.
  • [7] S.M. Belcastro and G.J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (5), 366–374, 1994.
  • [8] Gr.G. Călugăreanu, The total number of subgroups of a finite Abelian group, Sci. Math. Jpn. 60 (1), 157–167, 2004.
  • [9] J. Dutta, A characterization of 4-centralizer groups, Chin. J. Math. (N.Y.) Article ID:871072, 2 pages, 2013.
  • [10] J. Dutta, On a problem posed by Belcastro and Sherman, Kyungpook Math. J. 56 (1), 121–123, 2016.
  • [11] M. Golasiński and D.L. Goncalves, On automorphisms of finite Abelian p-groups, Math. Slovaca 58 (4), 405–412, 2008.
  • [12] M.M. Nasrabadi and A. Gholamian, On finite n-Acentralizers groups, Comm. Algebra 43 (2), 378–383, 2015.
  • [13] R.K. Nath, Commutativity degree of a class of finite groups and consequences, Bull. Aust. Math. Soc. 88 (3), 448–452, 2013.
  • [14] R. Schmidt, Subgroup lattices of groups, De Gruyter Exp. Math., 14. Walter de Gruyter, 1994.
  • [15] M. Zarrin, On element-centralizers in finite groups, Arch. Math. (Basel) 93, 497–503, 2009.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Zahar Mozafar Bu kişi benim 0000-0002-1039-7975

Bijan Taeri Bu kişi benim 0000-0001-7345-1281

Yayımlanma Tarihi 6 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 49 Sayı: 1

Kaynak Göster

APA Mozafar, Z., & Taeri, B. (2020). Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics, 49(1), 273-281. https://doi.org/10.15672/hujms.546988
AMA Mozafar Z, Taeri B. Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics. Şubat 2020;49(1):273-281. doi:10.15672/hujms.546988
Chicago Mozafar, Zahar, ve Bijan Taeri. “Acentralizers of Abelian Groups of Rank 2”. Hacettepe Journal of Mathematics and Statistics 49, sy. 1 (Şubat 2020): 273-81. https://doi.org/10.15672/hujms.546988.
EndNote Mozafar Z, Taeri B (01 Şubat 2020) Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics 49 1 273–281.
IEEE Z. Mozafar ve B. Taeri, “Acentralizers of Abelian groups of rank 2”, Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 1, ss. 273–281, 2020, doi: 10.15672/hujms.546988.
ISNAD Mozafar, Zahar - Taeri, Bijan. “Acentralizers of Abelian Groups of Rank 2”. Hacettepe Journal of Mathematics and Statistics 49/1 (Şubat 2020), 273-281. https://doi.org/10.15672/hujms.546988.
JAMA Mozafar Z, Taeri B. Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics. 2020;49:273–281.
MLA Mozafar, Zahar ve Bijan Taeri. “Acentralizers of Abelian Groups of Rank 2”. Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 1, 2020, ss. 273-81, doi:10.15672/hujms.546988.
Vancouver Mozafar Z, Taeri B. Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):273-81.