Let $G$ be a group. The Acentralizer of an automorphism $\alpha$ of $G$, is the subgroup of fixed points of $\alpha$, i.e., $C_G(\alpha)= \{g\in G \mid \alpha(g)=g\}$. We show that if $G$ is a finite Abelian $p$-group of rank $2$, where $p$ is an odd prime, then the number of Acentralizers of $G$ is exactly the number of subgroups of $G$. More precisely, we show that for each subgroup $U$ of $G$, there exists an automorphism $\alpha$ of $G$ such that $C_G(\alpha)=U$. Also we find the Acentralizers of infinite two-generator Abelian groups.
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Matematik |
Yazarlar | |
Yayımlanma Tarihi | 6 Şubat 2020 |
Yayımlandığı Sayı | Yıl 2020 Cilt: 49 Sayı: 1 |