Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 3, 974 - 983, 02.06.2020
https://doi.org/10.15672/hujms.474938

Abstract

References

  • [1] M.A. Abdou and A.A. Nasr, On the numerical treatment of the singular integral equation of the second kind, Appl. Math. Comput. 143 (2-3), 373–380, 2003.
  • [2] K. Al-Khaled and M. Alquran, Convergence and norm estimates of Hermite interpo- lation at zeros of Chevyshev polynomials, SpringerPlus, 5 (1), 2016.
  • [3] A.A. Badr, Integro-differential equation with Cauchy kernel, J. Comput. Appl. Math. 134 (1-2), 191–199, 2001.
  • [4] P. Baratella and A.P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2), 401–418, 2004.
  • [5] S. Bhattacharya and B.N. Mandal, Numerical solution of a singular integro- differential equation, Appl. Math. Comput. 195 (1), 346–350, 2008.
  • [6] A. Chakrabarti, Applied Singular Integral Equations, Science Publishers, 2011.
  • [7] Z. Chen and Y. Lin, The exact solution of a linear integral equation with weakly singular kernel, J. Math. Anal. Appl. 344 (2), 726–734, 2008.
  • [8] S.M.A. Darwish, Weakly singular functional-integral equation in infinite dimensional Banach spaces, Appl. Math. Comput. 136 (1), 123–129, 2003.
  • [9] R. Estrada and R.P. Kanwal, Singular integral equations, Springer Science & Business Media, 2012.
  • [10] M.A. Golberg, Numerical Solution of Integral Equations, Springer US, 1990.
  • [11] P. Karczmarek, D. Pylak, and M.A. Sheshko, Application of Jacobi polynomials to approximate solution of a singular integral equation with Cauchy kernel, Appl. Math. Comput. 181 (1), 694–707, 2006.
  • [12] F.K. Keshi, B.P. Moghaddam, and A. Aghili, A numerical approach for solving a class of variable-order fractional functional integral equations, Comput. Appl. Math. 37 (4), 4821–4834, 2018.
  • [13] N. Khorrami, A.S. Shamloo, and B.P. Moghaddam, Nystrom method for solution of fredholm integral equations of the second kind under interval data, J. Intell. Fuzzy Syst. 36 (3), 2807–2816, 2019.
  • [14] D. Kincaid and E.W. Cheney, Numerical Analysis: Mathematics of Scientific Com- puting, Am. Math. Soc. 2009.
  • [15] S. Kumar and A.L. Sangal, Numerical solution of singular integral equations using cubic spline interpolations, Indian J. Pure Appl. Math. 35 (3), 415–421, 2004.
  • [16] P.K. Kythe and P. Puri, Computational Methods for Linear Integral Equations, Birkhauser Boston, 2002.
  • [17] I. Lifanov, L. Poltavskii, and G. Vainikko, Hypersingular Integral Equations and Their Applications, CRC Press, 2003.
  • [18] B.N. Mandal and G.H. Bera, Approximate solution of a class of singular integral equations of second kind, J. Comput. Appl. Math. 206 (1), 189–195, 2007.
  • [19] B.P. Moghaddam and J.A. Tenreiro Machado, Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput. 71 (3), 1351– 1374, 2016.
  • [20] B.P. Moghaddam and J.A. Tenreiro Machado, A computational approach for the so- lution of a class of variable-order fractional integro-differential equations with weakly singular kernels, Fract. Calc. Appl. Anal. 20 (4), 1023–1042, 2017.
  • [21] P. Mokhtary, B.P. Moghaddam, A.M. Lopes, and J.A. Tenreiro Machado, A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay, Numer. Algorithms 1–20, 2019. doi:10.1007/s11075-019-00712-y.
  • [22] N.I. Muskhelishvili, Singular integral equations: Boundary problems of functions the- ory and their application to mathematical physics, P. Noordhoff, 1953.
  • [23] A. Polyanin, Handbook of Integral Equations, CRC Press, 1998.
  • [24] A. Setia, Numerical solution of various cases of Cauchy type singular integral equa- tion, Appl. Math. Comput. 230, 200–207, 2014.
  • [25] M. Sheshko, Singular integral equations with Cauchy and Hilbert kernels and theirs approximated solutions, The Learned Society of the Catholic University of Lublin, Lublin, 2003.
  • [26] B.Q. Tang and X.F. Li, Solution of a class of Volterra integral equations with singular and weakly singular kernels, Appl. Math. Comput. 199 (2), 406–413, 2008.
  • [27] J.A. Tenreiro Machado, F. Mainardi, V. Kiryakova, and T. Atanacković, Fractional calculus: D’où venons-nous? Que sommes-nous? Où allons-nous?, Fract. Calc. Appl. Anal. 19 (5), 1074–1104, 2016.
  • [28] X. Jin, L.M. Keer, and Q. Wang, A practical method for singular integral equations of the second kind, Eng. Fract. Mech. 75 (5), 1005–1014, 2008.

A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials

Year 2020, Volume: 49 Issue: 3, 974 - 983, 02.06.2020
https://doi.org/10.15672/hujms.474938

Abstract

A numerical algorithm based on Hermite polynomials for solving the Cauchy singular integral equation in the general form is presented. The Hermite polynomial interpolation of unknown functions is first introduced. The proposed technique is then used for approximating the solution of the Cauchy singular integral equation. This approach requires the solution of a system of linear algebraic equations. Two examples demonstrate the effectiveness of the proposed method.

References

  • [1] M.A. Abdou and A.A. Nasr, On the numerical treatment of the singular integral equation of the second kind, Appl. Math. Comput. 143 (2-3), 373–380, 2003.
  • [2] K. Al-Khaled and M. Alquran, Convergence and norm estimates of Hermite interpo- lation at zeros of Chevyshev polynomials, SpringerPlus, 5 (1), 2016.
  • [3] A.A. Badr, Integro-differential equation with Cauchy kernel, J. Comput. Appl. Math. 134 (1-2), 191–199, 2001.
  • [4] P. Baratella and A.P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2), 401–418, 2004.
  • [5] S. Bhattacharya and B.N. Mandal, Numerical solution of a singular integro- differential equation, Appl. Math. Comput. 195 (1), 346–350, 2008.
  • [6] A. Chakrabarti, Applied Singular Integral Equations, Science Publishers, 2011.
  • [7] Z. Chen and Y. Lin, The exact solution of a linear integral equation with weakly singular kernel, J. Math. Anal. Appl. 344 (2), 726–734, 2008.
  • [8] S.M.A. Darwish, Weakly singular functional-integral equation in infinite dimensional Banach spaces, Appl. Math. Comput. 136 (1), 123–129, 2003.
  • [9] R. Estrada and R.P. Kanwal, Singular integral equations, Springer Science & Business Media, 2012.
  • [10] M.A. Golberg, Numerical Solution of Integral Equations, Springer US, 1990.
  • [11] P. Karczmarek, D. Pylak, and M.A. Sheshko, Application of Jacobi polynomials to approximate solution of a singular integral equation with Cauchy kernel, Appl. Math. Comput. 181 (1), 694–707, 2006.
  • [12] F.K. Keshi, B.P. Moghaddam, and A. Aghili, A numerical approach for solving a class of variable-order fractional functional integral equations, Comput. Appl. Math. 37 (4), 4821–4834, 2018.
  • [13] N. Khorrami, A.S. Shamloo, and B.P. Moghaddam, Nystrom method for solution of fredholm integral equations of the second kind under interval data, J. Intell. Fuzzy Syst. 36 (3), 2807–2816, 2019.
  • [14] D. Kincaid and E.W. Cheney, Numerical Analysis: Mathematics of Scientific Com- puting, Am. Math. Soc. 2009.
  • [15] S. Kumar and A.L. Sangal, Numerical solution of singular integral equations using cubic spline interpolations, Indian J. Pure Appl. Math. 35 (3), 415–421, 2004.
  • [16] P.K. Kythe and P. Puri, Computational Methods for Linear Integral Equations, Birkhauser Boston, 2002.
  • [17] I. Lifanov, L. Poltavskii, and G. Vainikko, Hypersingular Integral Equations and Their Applications, CRC Press, 2003.
  • [18] B.N. Mandal and G.H. Bera, Approximate solution of a class of singular integral equations of second kind, J. Comput. Appl. Math. 206 (1), 189–195, 2007.
  • [19] B.P. Moghaddam and J.A. Tenreiro Machado, Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput. 71 (3), 1351– 1374, 2016.
  • [20] B.P. Moghaddam and J.A. Tenreiro Machado, A computational approach for the so- lution of a class of variable-order fractional integro-differential equations with weakly singular kernels, Fract. Calc. Appl. Anal. 20 (4), 1023–1042, 2017.
  • [21] P. Mokhtary, B.P. Moghaddam, A.M. Lopes, and J.A. Tenreiro Machado, A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay, Numer. Algorithms 1–20, 2019. doi:10.1007/s11075-019-00712-y.
  • [22] N.I. Muskhelishvili, Singular integral equations: Boundary problems of functions the- ory and their application to mathematical physics, P. Noordhoff, 1953.
  • [23] A. Polyanin, Handbook of Integral Equations, CRC Press, 1998.
  • [24] A. Setia, Numerical solution of various cases of Cauchy type singular integral equa- tion, Appl. Math. Comput. 230, 200–207, 2014.
  • [25] M. Sheshko, Singular integral equations with Cauchy and Hilbert kernels and theirs approximated solutions, The Learned Society of the Catholic University of Lublin, Lublin, 2003.
  • [26] B.Q. Tang and X.F. Li, Solution of a class of Volterra integral equations with singular and weakly singular kernels, Appl. Math. Comput. 199 (2), 406–413, 2008.
  • [27] J.A. Tenreiro Machado, F. Mainardi, V. Kiryakova, and T. Atanacković, Fractional calculus: D’où venons-nous? Que sommes-nous? Où allons-nous?, Fract. Calc. Appl. Anal. 19 (5), 1074–1104, 2016.
  • [28] X. Jin, L.M. Keer, and Q. Wang, A practical method for singular integral equations of the second kind, Eng. Fract. Mech. 75 (5), 1005–1014, 2008.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Behrouz Parsa Moghaddam 0000-0003-4957-9028

J. A. Tenreiro Machado This is me 0000-0003-4274-4879

Parisa Sattari Shajari This is me 0000-0001-6014-4864

Zeynab Salamat Mostaghim This is me 0000-0003-2352-976X

Publication Date June 2, 2020
Published in Issue Year 2020 Volume: 49 Issue: 3

Cite

APA Parsa Moghaddam, B., Tenreiro Machado, J. A., Sattari Shajari, P., Salamat Mostaghim, Z. (2020). A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials. Hacettepe Journal of Mathematics and Statistics, 49(3), 974-983. https://doi.org/10.15672/hujms.474938
AMA Parsa Moghaddam B, Tenreiro Machado JA, Sattari Shajari P, Salamat Mostaghim Z. A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):974-983. doi:10.15672/hujms.474938
Chicago Parsa Moghaddam, Behrouz, J. A. Tenreiro Machado, Parisa Sattari Shajari, and Zeynab Salamat Mostaghim. “A Numerical Algorithm for Solving the Cauchy Singular Integral Equation Based on Hermite Polynomials”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 974-83. https://doi.org/10.15672/hujms.474938.
EndNote Parsa Moghaddam B, Tenreiro Machado JA, Sattari Shajari P, Salamat Mostaghim Z (June 1, 2020) A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials. Hacettepe Journal of Mathematics and Statistics 49 3 974–983.
IEEE B. Parsa Moghaddam, J. A. Tenreiro Machado, P. Sattari Shajari, and Z. Salamat Mostaghim, “A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 974–983, 2020, doi: 10.15672/hujms.474938.
ISNAD Parsa Moghaddam, Behrouz et al. “A Numerical Algorithm for Solving the Cauchy Singular Integral Equation Based on Hermite Polynomials”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 974-983. https://doi.org/10.15672/hujms.474938.
JAMA Parsa Moghaddam B, Tenreiro Machado JA, Sattari Shajari P, Salamat Mostaghim Z. A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials. Hacettepe Journal of Mathematics and Statistics. 2020;49:974–983.
MLA Parsa Moghaddam, Behrouz et al. “A Numerical Algorithm for Solving the Cauchy Singular Integral Equation Based on Hermite Polynomials”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 974-83, doi:10.15672/hujms.474938.
Vancouver Parsa Moghaddam B, Tenreiro Machado JA, Sattari Shajari P, Salamat Mostaghim Z. A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):974-83.