[1] A. Ahmad, M. Bača, M. Lascsáková and A. Semaničová–Feňovčíková, Super magic
and antimagic labelings of disjoint union of plane graphs, Sci. Int. 24 (1), 21–25, 2012.
[2] S. Arumugam, M. Miller, O. Phanalasy and J. Ryan, Antimagic labeling of generalized
pyramid graphs, Acta Math. Sinica - English Series, 30, 283–290, 2014.
[3] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, Labelings of plane graphs
containing Hamilton path, Acta Math. Sinica - English Series, 27 (4), 701–714, 2011.
[4] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M.A. Umar, Tree-antimagicness
of disconnected graphs, Mathematical Problems in Engineering, 2015,
Article ID 504251, 1–4, 2015.
[5] M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some
solutions, Brown Walker Press, Boca Raton, Florida, 2008.
[6] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, Super d-antimagic
labelings of disconnected plane graphs, Acta Math. Sinica - English Series, 26 (12),
2283–2294, 2010.
[7] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness
of disconnected graphs, Bull. Aust. Math. Soc. 94 (2), 201–207, 2016.
[8] M. Bača, A. Ovais, A. Semaničová-Feňovčíková and M.A. Umar, Fans are cycleantimagic,
Australas. J. Combin. 68 (1), 94–105, 2017.
[9] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs,
SUT J. Math. 34, 105–109, 1998.
[10] A. Gutiérrez and A.S. Lladó, Magic coverings, J. Combin. Math. Combin. Comput.
55, 43–56, 2005.
[11] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of
graphs, J. Combin. Math. Combin. Comput. 71, 273–281, 2009.
[12] N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada, On (a, d)-Hantimagic
total labelings for shackles of a connected graph H, Australasian J. Combin.
57, 127–138, 2013.
[13] P. Jeyanthi, N.T. Muthuraja, A. Semaničová-Feňovčíková and S.J. Dharshikha, More
classes of super cycle-antimagic graphs, Australas. J. Combin. 67 (1), 46–64, 2017.
[14] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13,
451–461, 1970.
[15] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307, 2925–2933, 2007.
[16] K.W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math. 24,
165–197, 1983.
[17] A.M. Marr and W.D. Wallis, Magic Graphs, Birkhäuser, New York, 2013.
[18] T.K. Maryati, A.N.M. Salman and E.T. Baskoro, Supermagic coverings of the disjoint
union of graphs and amalgamations, Discrete Math. 313, 397–405, 2013.
[19] T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan and M. Miller, On Hsupermagic
labelings for certain shackles and amalgamations of a connected graph,
Utilitas Math. 83, 333–342, 2010.
[20] A.A.G. Ngurah, A.N.M. Salman and L. Susilowati, H-supermagic labelings of graphs,
Discrete Math. 310, 1293–1300, 2010.
[21] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On (super)-edge-magic total labelings
of subdivision of stars Sn, Utilitas Math. 81, 275–284, 2010.
[22] A. Semaničová–Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels
are cycle-antimagic, Electron. Notes Discrete Math. 48, 11–18, 2015.
[23] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings,
Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), 179–189, 2000.
Ladders and fan graphs are cycle-antimagic
Year 2020,
Volume: 49 Issue: 3, 1093 - 1106, 02.06.2020
A simple graph $G=(V,E)$ admits an~$H$-covering if every edge in $E$ belongs to at least one subgraph of $G$ isomorphic to a given graph $H$. The graph $G$ admitting an $H$-covering is $(a,d)$-$H$-antimagic if there exists a~bijection $f:V\cup E\to\{1,2,\cdots,|V|+|E|\}$ such that, for all subgraphs $H'$ of $G$ isomorphic to $H$, the $H'$-weights, $wt_f(H')= \sum_{v\in V(H')} f(v) + \sum_{e\in E(H')} f(e)$, form an~arithmetic progression with the initial term $a$ and the common difference $d$. Such a labeling is called {\it super} if the smallest possible labels appear on the vertices. In this paper we prove the existence of super $(a,d)$-$H$-antimagic labelings of fan graphs and ladders for $H$ isomorphic to a cycle.
[1] A. Ahmad, M. Bača, M. Lascsáková and A. Semaničová–Feňovčíková, Super magic
and antimagic labelings of disjoint union of plane graphs, Sci. Int. 24 (1), 21–25, 2012.
[2] S. Arumugam, M. Miller, O. Phanalasy and J. Ryan, Antimagic labeling of generalized
pyramid graphs, Acta Math. Sinica - English Series, 30, 283–290, 2014.
[3] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, Labelings of plane graphs
containing Hamilton path, Acta Math. Sinica - English Series, 27 (4), 701–714, 2011.
[4] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M.A. Umar, Tree-antimagicness
of disconnected graphs, Mathematical Problems in Engineering, 2015,
Article ID 504251, 1–4, 2015.
[5] M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some
solutions, Brown Walker Press, Boca Raton, Florida, 2008.
[6] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, Super d-antimagic
labelings of disconnected plane graphs, Acta Math. Sinica - English Series, 26 (12),
2283–2294, 2010.
[7] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness
of disconnected graphs, Bull. Aust. Math. Soc. 94 (2), 201–207, 2016.
[8] M. Bača, A. Ovais, A. Semaničová-Feňovčíková and M.A. Umar, Fans are cycleantimagic,
Australas. J. Combin. 68 (1), 94–105, 2017.
[9] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs,
SUT J. Math. 34, 105–109, 1998.
[10] A. Gutiérrez and A.S. Lladó, Magic coverings, J. Combin. Math. Combin. Comput.
55, 43–56, 2005.
[11] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of
graphs, J. Combin. Math. Combin. Comput. 71, 273–281, 2009.
[12] N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada, On (a, d)-Hantimagic
total labelings for shackles of a connected graph H, Australasian J. Combin.
57, 127–138, 2013.
[13] P. Jeyanthi, N.T. Muthuraja, A. Semaničová-Feňovčíková and S.J. Dharshikha, More
classes of super cycle-antimagic graphs, Australas. J. Combin. 67 (1), 46–64, 2017.
[14] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13,
451–461, 1970.
[15] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307, 2925–2933, 2007.
[16] K.W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math. 24,
165–197, 1983.
[17] A.M. Marr and W.D. Wallis, Magic Graphs, Birkhäuser, New York, 2013.
[18] T.K. Maryati, A.N.M. Salman and E.T. Baskoro, Supermagic coverings of the disjoint
union of graphs and amalgamations, Discrete Math. 313, 397–405, 2013.
[19] T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan and M. Miller, On Hsupermagic
labelings for certain shackles and amalgamations of a connected graph,
Utilitas Math. 83, 333–342, 2010.
[20] A.A.G. Ngurah, A.N.M. Salman and L. Susilowati, H-supermagic labelings of graphs,
Discrete Math. 310, 1293–1300, 2010.
[21] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On (super)-edge-magic total labelings
of subdivision of stars Sn, Utilitas Math. 81, 275–284, 2010.
[22] A. Semaničová–Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels
are cycle-antimagic, Electron. Notes Discrete Math. 48, 11–18, 2015.
[23] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings,
Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), 179–189, 2000.
Baca, M., Jeyanthi, P., Thillaiammal Muthuraja, N., Selvagopal, P. N., et al. (2020). Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics, 49(3), 1093-1106. https://doi.org/10.15672/hujms.647228
AMA
Baca M, Jeyanthi P, Thillaiammal Muthuraja N, Selvagopal PN, Fenovcıkova A. Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):1093-1106. doi:10.15672/hujms.647228
Chicago
Baca, Martin, P. Jeyanthi, Narayanaperumal Thillaiammal Muthuraja, Pothukutti Nadar Selvagopal, and Andrea Fenovcıkova. “Ladders and Fan Graphs Are Cycle-Antimagic”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 1093-1106. https://doi.org/10.15672/hujms.647228.
EndNote
Baca M, Jeyanthi P, Thillaiammal Muthuraja N, Selvagopal PN, Fenovcıkova A (June 1, 2020) Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics 49 3 1093–1106.
IEEE
M. Baca, P. Jeyanthi, N. Thillaiammal Muthuraja, P. N. Selvagopal, and A. Fenovcıkova, “Ladders and fan graphs are cycle-antimagic”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 1093–1106, 2020, doi: 10.15672/hujms.647228.
ISNAD
Baca, Martin et al. “Ladders and Fan Graphs Are Cycle-Antimagic”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 1093-1106. https://doi.org/10.15672/hujms.647228.
JAMA
Baca M, Jeyanthi P, Thillaiammal Muthuraja N, Selvagopal PN, Fenovcıkova A. Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics. 2020;49:1093–1106.
MLA
Baca, Martin et al. “Ladders and Fan Graphs Are Cycle-Antimagic”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 1093-06, doi:10.15672/hujms.647228.
Vancouver
Baca M, Jeyanthi P, Thillaiammal Muthuraja N, Selvagopal PN, Fenovcıkova A. Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):1093-106.