A special integer-valued bilinear time series model with applications
Year 2022,
Volume: 51 Issue: 5, 1458 - 1471, 01.10.2022
Sakineh Ramezani
Mehrnaz Mohammadpour
Abstract
The present work proposes a special integer-valued bilinear time series model based on the thinning operators. Basic probabilistic and statistical properties of this class of models are discussed. Moreover, parameter estimation methods in the time and frequency domains and forecasting are addressed. Finally, the performances of the estimation methods are illustrated through a simulation study and an empirical application to two data sets.
References
- [1] B. Basrak, R.A. Davis and T. Mikosch, The sample ACF of a simple bilinear process,
Stoch. Process. Their Appl. 83 (9), 1-14, 1999.
- [2] M. Bentarzi and W. Bentarzi, Periodic integer-valued bilinear time series model,
Comm. Statist. Theory Methods 46 (3), 1184-1201, 2017.
- [3] P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, 2nd ed., Springer,
1991.
- [4] R.A. Davis and S.I. Resnick, Limit theory for bilinear processes with heavy-tailed
noise, Ann. Appl. Probab. 6 (4), 1191-1210, 1996.
- [5] P. Doukhan, A. Latour and D. Oraichi, Simple integer-valued bilinear time series
model, Adv. in Appl. Probab. 38 (2), 559-578, 2006.
- [6] F.C. Drost, R. van den Akker and B.J.M. Werker, Note on integer-valued bilinear
time series, Statist. Probab. Lett. 38 (8), 559-578, 2008.
- [7] C.W.J. Granger and A.P. Andersen, An Introduction to Bilinear Time Series Models,
Vandenhoeck and Ruprecht, Gottingen, 1978.
- [8] M. Mohammadpour, H.S. Bakouch and S. Ramzani, An integer-valued bilinear time
series model via two random operators, Math. Comput. Model. Dyn. Syst. 25 (4),
429-446, 2019.
- [9] L. Pascual, J. Romo and E. Ruiz, Bootstrap predictive inference for ARIMA processes,
J. Time Series Anal. 25 (4), 449-465, 2004.
- [10] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.
- [11] F.W. Steutel and K. van Harn, Discrete analogues of self-decomposability and stability,
Ann. Probab. 7 (5), 893-899, 1979.
- [12] T. Subba Rao, On the theory of bilinear time series models, J. R. Stat. Soc. Ser. B.
Stat. Methodol. 43 (2), 244-255, 1981.
- [13] K.F. Turkman and M.A.A. Turkman, Extremes of bilinear time series models, J. Time
Series Anal. 18 (3), 305-319, 1997.
- [14] P. Whittle, Estimation and information in stationary time series, Ark. Mat. 2 (5),
423-434, 1953.
- [15] P. Whittle, A Study in the Analysis of Stationary Time Series, Almquist and Wiksell,
Stockholm, 1954.
- [16] Z. Zhang and H. Tong, Some distributional properties of a first-order nonnegative
bilinear time series model, J. Appl. Probab. 38 (3), 659-671, 2001.
Year 2022,
Volume: 51 Issue: 5, 1458 - 1471, 01.10.2022
Sakineh Ramezani
Mehrnaz Mohammadpour
References
- [1] B. Basrak, R.A. Davis and T. Mikosch, The sample ACF of a simple bilinear process,
Stoch. Process. Their Appl. 83 (9), 1-14, 1999.
- [2] M. Bentarzi and W. Bentarzi, Periodic integer-valued bilinear time series model,
Comm. Statist. Theory Methods 46 (3), 1184-1201, 2017.
- [3] P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, 2nd ed., Springer,
1991.
- [4] R.A. Davis and S.I. Resnick, Limit theory for bilinear processes with heavy-tailed
noise, Ann. Appl. Probab. 6 (4), 1191-1210, 1996.
- [5] P. Doukhan, A. Latour and D. Oraichi, Simple integer-valued bilinear time series
model, Adv. in Appl. Probab. 38 (2), 559-578, 2006.
- [6] F.C. Drost, R. van den Akker and B.J.M. Werker, Note on integer-valued bilinear
time series, Statist. Probab. Lett. 38 (8), 559-578, 2008.
- [7] C.W.J. Granger and A.P. Andersen, An Introduction to Bilinear Time Series Models,
Vandenhoeck and Ruprecht, Gottingen, 1978.
- [8] M. Mohammadpour, H.S. Bakouch and S. Ramzani, An integer-valued bilinear time
series model via two random operators, Math. Comput. Model. Dyn. Syst. 25 (4),
429-446, 2019.
- [9] L. Pascual, J. Romo and E. Ruiz, Bootstrap predictive inference for ARIMA processes,
J. Time Series Anal. 25 (4), 449-465, 2004.
- [10] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.
- [11] F.W. Steutel and K. van Harn, Discrete analogues of self-decomposability and stability,
Ann. Probab. 7 (5), 893-899, 1979.
- [12] T. Subba Rao, On the theory of bilinear time series models, J. R. Stat. Soc. Ser. B.
Stat. Methodol. 43 (2), 244-255, 1981.
- [13] K.F. Turkman and M.A.A. Turkman, Extremes of bilinear time series models, J. Time
Series Anal. 18 (3), 305-319, 1997.
- [14] P. Whittle, Estimation and information in stationary time series, Ark. Mat. 2 (5),
423-434, 1953.
- [15] P. Whittle, A Study in the Analysis of Stationary Time Series, Almquist and Wiksell,
Stockholm, 1954.
- [16] Z. Zhang and H. Tong, Some distributional properties of a first-order nonnegative
bilinear time series model, J. Appl. Probab. 38 (3), 659-671, 2001.