Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 4, 1470 - 1478, 29.08.2025
https://doi.org/10.15672/hujms.1564485

Abstract

References

  • [1] P. Barry and A. Hennessy, Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms, J. Integer Seq. 12, Article ID 09.5.3., 2009.
  • [2] M. Chamberland and C. French, Generalized Catalan numbers and generalized Hankel transformations, J. Integer Seq. 10, Article ID 07.1.1., 2007.
  • [3] A. S. Cvetkovic, P.M. Rajkovic and M. Ivkovic, Catalan Numbers, the Hankel Transform and Fibonacci Numbers, J. Integer Seq. 5, Article ID 02.1.3., 2002.
  • [4] J. Dini and P. Maroni, La multiplication d une forme linaire par une forme rationnelle. Application aux polynômes de Laguerre-Hahn, Ann. Pol. Math. 52, 175-185, 1990.
  • [5] A. Junod, Hankel determinants and orthogonal polynomials, Expo. Math. 21, 63–74, 2003.
  • [6] P. V. Krtolica, P. S. Stanimirovic and I. Stojanovic, An alternative decomposition of Catalan number, Facta Univ., Math. Inform. 33(1), 63–77, 2018.
  • [7] D. S. Kumar, CH. Suneetha and A. Chandrasekhar, Novel encryption schemes based on Catalan numbers, Int. J. Eng. Res. Appl. 2(2), 161–166, 2012.
  • [8] J.W. Layman, The Hankel Transform and Some of Its Properties, J. Integer Seq. 4, Article ID 01.1.5, 2001.
  • [9] M. Goubi, On a generalization of Catalan polynomials, Facta Univ., Math. Inform. 33(2), 163–176, 2018.
  • [10] L. Mu, Y. Wang and Y.N. Yeh, Hankel determinants of linear combinations of consecutive Catalan-like numbers, Discrete Math. 340(6), 1389-1396, 2017.
  • [11] A.O. Öztürk and F. Kaplan, Some properties of bivariate Fibonacci and Lucas quaternion polynomials, Facta Univ., Math. Inform. 35(1), 73–87, 2020.
  • [12] P.M. Rajkovic, M.D. Petkovic and P. Barry, The Hankel Transform of the Sum of Consecutive Generalized Catalan Numbers, Integral Transforms Spec. Funct. 18, 285–296, 2007.
  • [13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically at http://oeis.org, 2024.
  • [14] R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Hankel transform of linear combination of three consecutive Catalan numbers

Year 2025, Volume: 54 Issue: 4, 1470 - 1478, 29.08.2025
https://doi.org/10.15672/hujms.1564485

Abstract

In this paper, we consider the Hankel determinants of the linear combination of three consecutive Catalan numbers, and then three consecutive shifted Catalan numbers. For their computing, we apply known methods based on the connections between continued fractions, orthogonal polynomials and moment-determinants. The properties of orthogonal polynomials enable us to evaluate the generating function of the corresponding sequence Hankel determinants in closed form.

References

  • [1] P. Barry and A. Hennessy, Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms, J. Integer Seq. 12, Article ID 09.5.3., 2009.
  • [2] M. Chamberland and C. French, Generalized Catalan numbers and generalized Hankel transformations, J. Integer Seq. 10, Article ID 07.1.1., 2007.
  • [3] A. S. Cvetkovic, P.M. Rajkovic and M. Ivkovic, Catalan Numbers, the Hankel Transform and Fibonacci Numbers, J. Integer Seq. 5, Article ID 02.1.3., 2002.
  • [4] J. Dini and P. Maroni, La multiplication d une forme linaire par une forme rationnelle. Application aux polynômes de Laguerre-Hahn, Ann. Pol. Math. 52, 175-185, 1990.
  • [5] A. Junod, Hankel determinants and orthogonal polynomials, Expo. Math. 21, 63–74, 2003.
  • [6] P. V. Krtolica, P. S. Stanimirovic and I. Stojanovic, An alternative decomposition of Catalan number, Facta Univ., Math. Inform. 33(1), 63–77, 2018.
  • [7] D. S. Kumar, CH. Suneetha and A. Chandrasekhar, Novel encryption schemes based on Catalan numbers, Int. J. Eng. Res. Appl. 2(2), 161–166, 2012.
  • [8] J.W. Layman, The Hankel Transform and Some of Its Properties, J. Integer Seq. 4, Article ID 01.1.5, 2001.
  • [9] M. Goubi, On a generalization of Catalan polynomials, Facta Univ., Math. Inform. 33(2), 163–176, 2018.
  • [10] L. Mu, Y. Wang and Y.N. Yeh, Hankel determinants of linear combinations of consecutive Catalan-like numbers, Discrete Math. 340(6), 1389-1396, 2017.
  • [11] A.O. Öztürk and F. Kaplan, Some properties of bivariate Fibonacci and Lucas quaternion polynomials, Facta Univ., Math. Inform. 35(1), 73–87, 2020.
  • [12] P.M. Rajkovic, M.D. Petkovic and P. Barry, The Hankel Transform of the Sum of Consecutive Generalized Catalan Numbers, Integral Transforms Spec. Funct. 18, 285–296, 2007.
  • [13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically at http://oeis.org, 2024.
  • [14] R. Stanley, Catalan Numbers, Cambridge University Press, 2015.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Mathematics
Authors

Radica Bojičić 0000-0002-4192-5646

M.d. Petković 0000-0002-6862-1968

Paul Barry

Early Pub Date April 11, 2025
Publication Date August 29, 2025
Submission Date October 17, 2024
Acceptance Date December 20, 2024
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Bojičić, R., Petković, M., & Barry, P. (2025). Hankel transform of linear combination of three consecutive Catalan numbers. Hacettepe Journal of Mathematics and Statistics, 54(4), 1470-1478. https://doi.org/10.15672/hujms.1564485
AMA Bojičić R, Petković M, Barry P. Hankel transform of linear combination of three consecutive Catalan numbers. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1470-1478. doi:10.15672/hujms.1564485
Chicago Bojičić, Radica, M.d. Petković, and Paul Barry. “Hankel Transform of Linear Combination of Three Consecutive Catalan Numbers”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1470-78. https://doi.org/10.15672/hujms.1564485.
EndNote Bojičić R, Petković M, Barry P (August 1, 2025) Hankel transform of linear combination of three consecutive Catalan numbers. Hacettepe Journal of Mathematics and Statistics 54 4 1470–1478.
IEEE R. Bojičić, M. Petković, and P. Barry, “Hankel transform of linear combination of three consecutive Catalan numbers”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1470–1478, 2025, doi: 10.15672/hujms.1564485.
ISNAD Bojičić, Radica et al. “Hankel Transform of Linear Combination of Three Consecutive Catalan Numbers”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1470-1478. https://doi.org/10.15672/hujms.1564485.
JAMA Bojičić R, Petković M, Barry P. Hankel transform of linear combination of three consecutive Catalan numbers. Hacettepe Journal of Mathematics and Statistics. 2025;54:1470–1478.
MLA Bojičić, Radica et al. “Hankel Transform of Linear Combination of Three Consecutive Catalan Numbers”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1470-8, doi:10.15672/hujms.1564485.
Vancouver Bojičić R, Petković M, Barry P. Hankel transform of linear combination of three consecutive Catalan numbers. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1470-8.