Year 2025,
Volume: 54 Issue: 4, 1470 - 1478, 29.08.2025
Radica Bojičić
,
M.d. Petković
,
Paul Barry
References
-
[1] P. Barry and A. Hennessy, Notes on a Family of Riordan Arrays and Associated
Integer Hankel Transforms, J. Integer Seq. 12, Article ID 09.5.3., 2009.
-
[2] M. Chamberland and C. French, Generalized Catalan numbers and generalized Hankel
transformations, J. Integer Seq. 10, Article ID 07.1.1., 2007.
-
[3] A. S. Cvetkovic, P.M. Rajkovic and M. Ivkovic, Catalan Numbers, the Hankel Transform
and Fibonacci Numbers, J. Integer Seq. 5, Article ID 02.1.3., 2002.
-
[4] J. Dini and P. Maroni, La multiplication d une forme linaire par une forme rationnelle.
Application aux polynômes de Laguerre-Hahn, Ann. Pol. Math. 52, 175-185, 1990.
-
[5] A. Junod, Hankel determinants and orthogonal polynomials, Expo. Math. 21, 63–74,
2003.
-
[6] P. V. Krtolica, P. S. Stanimirovic and I. Stojanovic, An alternative decomposition of
Catalan number, Facta Univ., Math. Inform. 33(1), 63–77, 2018.
-
[7] D. S. Kumar, CH. Suneetha and A. Chandrasekhar, Novel encryption schemes based
on Catalan numbers, Int. J. Eng. Res. Appl. 2(2), 161–166, 2012.
-
[8] J.W. Layman, The Hankel Transform and Some of Its Properties, J. Integer Seq. 4,
Article ID 01.1.5, 2001.
-
[9] M. Goubi, On a generalization of Catalan polynomials, Facta Univ., Math. Inform.
33(2), 163–176, 2018.
-
[10] L. Mu, Y. Wang and Y.N. Yeh, Hankel determinants of linear combinations of consecutive
Catalan-like numbers, Discrete Math. 340(6), 1389-1396, 2017.
-
[11] A.O. Öztürk and F. Kaplan, Some properties of bivariate Fibonacci and Lucas quaternion
polynomials, Facta Univ., Math. Inform. 35(1), 73–87, 2020.
-
[12] P.M. Rajkovic, M.D. Petkovic and P. Barry, The Hankel Transform of the Sum of Consecutive
Generalized Catalan Numbers, Integral Transforms Spec. Funct. 18, 285–296,
2007.
-
[13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically
at http://oeis.org, 2024.
-
[14] R. Stanley, Catalan Numbers, Cambridge University Press, 2015.
Hankel transform of linear combination of three consecutive Catalan numbers
Year 2025,
Volume: 54 Issue: 4, 1470 - 1478, 29.08.2025
Radica Bojičić
,
M.d. Petković
,
Paul Barry
Abstract
In this paper, we consider the Hankel determinants of the linear combination of three consecutive Catalan numbers, and then three consecutive shifted Catalan numbers. For their computing, we apply known methods based on the connections between continued fractions, orthogonal polynomials and moment-determinants. The properties of orthogonal polynomials enable us to evaluate the generating function of the corresponding sequence Hankel determinants in closed form.
References
-
[1] P. Barry and A. Hennessy, Notes on a Family of Riordan Arrays and Associated
Integer Hankel Transforms, J. Integer Seq. 12, Article ID 09.5.3., 2009.
-
[2] M. Chamberland and C. French, Generalized Catalan numbers and generalized Hankel
transformations, J. Integer Seq. 10, Article ID 07.1.1., 2007.
-
[3] A. S. Cvetkovic, P.M. Rajkovic and M. Ivkovic, Catalan Numbers, the Hankel Transform
and Fibonacci Numbers, J. Integer Seq. 5, Article ID 02.1.3., 2002.
-
[4] J. Dini and P. Maroni, La multiplication d une forme linaire par une forme rationnelle.
Application aux polynômes de Laguerre-Hahn, Ann. Pol. Math. 52, 175-185, 1990.
-
[5] A. Junod, Hankel determinants and orthogonal polynomials, Expo. Math. 21, 63–74,
2003.
-
[6] P. V. Krtolica, P. S. Stanimirovic and I. Stojanovic, An alternative decomposition of
Catalan number, Facta Univ., Math. Inform. 33(1), 63–77, 2018.
-
[7] D. S. Kumar, CH. Suneetha and A. Chandrasekhar, Novel encryption schemes based
on Catalan numbers, Int. J. Eng. Res. Appl. 2(2), 161–166, 2012.
-
[8] J.W. Layman, The Hankel Transform and Some of Its Properties, J. Integer Seq. 4,
Article ID 01.1.5, 2001.
-
[9] M. Goubi, On a generalization of Catalan polynomials, Facta Univ., Math. Inform.
33(2), 163–176, 2018.
-
[10] L. Mu, Y. Wang and Y.N. Yeh, Hankel determinants of linear combinations of consecutive
Catalan-like numbers, Discrete Math. 340(6), 1389-1396, 2017.
-
[11] A.O. Öztürk and F. Kaplan, Some properties of bivariate Fibonacci and Lucas quaternion
polynomials, Facta Univ., Math. Inform. 35(1), 73–87, 2020.
-
[12] P.M. Rajkovic, M.D. Petkovic and P. Barry, The Hankel Transform of the Sum of Consecutive
Generalized Catalan Numbers, Integral Transforms Spec. Funct. 18, 285–296,
2007.
-
[13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically
at http://oeis.org, 2024.
-
[14] R. Stanley, Catalan Numbers, Cambridge University Press, 2015.