Methods of Control for Generators that Used in Wind Turbines
Yıl 2025,
Cilt: 10 Sayı: 4, 255 - 271, 31.12.2025
Omran Alabedalkhamıs
,
Hüseyin Alptekin
Öz
This paper offers an overview of control in electrical machines. The primary aim of this paper is to determine the optimal control method for most types of electrical machines. First of all, the principle of controlling electrical machines in general has been explained, after that, scalar control and vector control have been studied. Direct and indirect vector control have been studied and compared, in addition to determining the advantages and disadvantages of each of them. This paper has focused on studying the vector control of a Doubly Fed Induction Generator (DFIG), as it is one of the most widely used generators in wind energy. The control of current, power and speed from the rotor side has been studied by building a set of equations that represent the mathematical model of Doubly Fed Induction Generator (DFIG). As for the grid side, the method of regulating the reactive power between Doubly Fed Induction Generator (DFIG), and the grid has been explained. The results are discussed, along with a simplified comparison between scalar and vector control. The paper also includes a simplified comparison between generator types, identifying the advantages and disadvantages of each.
Etik Beyan
I declare that all processes of the study are in accordance with research and publication ethics, and that I comply with ethical rules and scientific citation principles.
Destekleyen Kurum
EFG ELEKTRİK ENERJİ A.Ş. AR-GE DİYARBAKIR TÜRKİYE
Teşekkür
I want to thank EFG ELEKTRİK ENERJİ company because it supports us to do well in researching
Kaynakça
-
Tanaka, N. (2010). World energy outlook 2010. International Energy Agency. Paris: IEA.
-
Takahashi, I., & Noguchi, T. (2008). A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transactions on Industry applications, (5), 820-827.
-
Baader, U., Depenbrock, M., & Gierse, G. (2002). Direct self-control (DSC) of inverter-fed induction machine: a basis for speed control without speed measurement. IEEE transactions on industry applications, 28(3), 581-588.
-
Noguchi, T., Tomiki, H., Kondo, S., & Takahashi, I. (2002). Direct power control of PWM converter without power-source voltage sensors. IEEE transactions on industry applications, 34(3), 473-479.
-
Malinowski, M., Kazmierkowski, M. P., Hansen, S., Blaabjerg, F., & Marques, G. D. (2002). Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Transactions on industry applications, 37(4), 1019-1027.
-
Escobar, G., Stankovic, A. M., Carrasco, J. M., Galván, E., & Ortega, R. (2003). Analysis and design of direct power control (DPC) for a three phase synchronous rectifier via output regulation subspaces. IEEE Transactions on Power Electronics, 18(3), 823-830.
-
Gokhale, K. P., Karraker, D. W., & Heikkilä, S. J. (2002). U.S. Patent No. 6,448,735. Washington, DC: U.S. Patent and Trademark Office.
-
Mohammadpour, A., Sadeghi, S., & Parsa, L. (2013). A generalized fault-tolerant control strategy for five-phase PM motor drives considering star, pentagon, and pentacle connections of stator windings. IEEE Transactions on Industrial Electronics, 61(1), 63-75.
-
Fei, M., & Zanasi, R. (2012, June). Multi-phase synchronous motors: Minimum dissipation fault-tolerant controls. In International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion (pp. 219-224). IEEE.
-
Locment, F., Semail, E., & Kestelyn, X. (2008). Vectorial approach-based control of a seven-phase axial flux machine designed for fault operation. IEEE Transactions on Industrial Electronics, 55(10), 3682-3691.
-
Kianinezhad, R., Nahid-Mobarakeh, B., Baghli, L., Betin, F., & Capolino, G. A. (2008). Modeling and control of six-phase symmetrical induction machine under fault condition due to open phases. IEEE Transactions on Industrial Electronics, 55(5), 1966-1977.
-
Tani, A., Mengoni, M., Zarri, L., Serra, G., & Casadei, D. (2011). Control of multiphase induction motors with an odd number of phases under open-circuit phase faults. IEEE Transactions on Power Electronics, 27(2), 565-577.
-
Beig, A. R., Narayanan, G., & Ranganathan, V. T. (2007). Modified SVPWM algorithm for three level VSI with synchronized and symmetrical waveforms. IEEE transactions on industrial electronics, 54(1), 486-494.
-
Beig, A. R., Narayanan, G., & Ranganathan, V. T. (2002, November). Space vector based synchronized PWM algorithm for three level voltage source inverters: principles and application to V/f drives. In IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02 (Vol. 2, pp. 1249-1254). IEEE.
-
Munoz-Garcia, A., Lipo, T. A., & Novotny, D. W. (2002). A new induction motor V/f control method capable of high-performance regulation at low speeds. IEEE transactions on Industry Applications, 34(4), 813-821.
-
Wang, C. C., & Fang, C. H. (2003). Sensorless scalar-controlled induction motor drives with modified flux observer. IEEE transactions on energy conversion, 18(2), 181-186.
-
Hopfensperger, B., Atkinson, D. J., & Lakin, R. A. (1999). Stator flux oriented control of a cascaded doubly-fed induction machine. IEE Proceedings-Electric Power Applications, 146(6), 597-605.
-
Bensadeq, A. (2012). Design and Control of the Brushless Doubly Fed Twin Induction Generator (BDFTIG) using dSPACE (Doctoral dissertation, University of Leicester).
-
Diaz, A., Saltares, R., Rodriguez, C., Nunez, R. F., Ortiz-Rivera, E. I., & Gonzalez-Llorente, J. (2009, May). Induction motor equivalent circuit for dynamic simulation. In 2009 IEEE International Electric Machines and Drives Conference (pp. 858-863). IEEE.
-
Wang, S., & Ding, Y. (1993). Stability analysis of field oriented doubly-fed induction machine drive based on computer simulation. Electric Machines and power systems, 21(1), 11-24.
-
Xu, L., & Cheng, W. (1995). Torque and reactive power control of a doubly fed induction machine by position sensorless scheme. IEEE transactions on Industry Applications, 31(3), 636-642.
-
Hopfensperger, B., Atkinson, D. J., & Lakin, R. A. (2000). Stator-flux-oriented control of a doubly-fed induction machine: with and without position encoder. IEE Proceedings-Electric power applications, 147(4), 241-250.
-
Leonhard, W. (2001). Control of electrical drives. Springer Science & Business Media.
-
Pena, R., Clare, J. C., & Asher, G. M. (1996). Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proceedings-Electric power applications, 143(3), 231-241.
-
Tang, Y., & Xu, L. (1995). A flexible active and reactive power control strategy for a variable speed constant frequency generating system. IEEE Transactions on power electronics, 10(4), 472-478.
-
Datta, R., & Ranganathan, V. T. (1999, October). Decoupled control of active and reactive power for a grid-connected doubly-fed wound rotor induction machine without position sensors. In Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370) (Vol. 4, pp. 2623-2630). IEEE.
-
Morel, L., Godfroid, H., Mirzaian, A., & Kauffmann, J. M. (1998). Double-fed induction machine: converter optimisation and field oriented control without position sensor. IEE Proceedings-Electric Power Applications, 145(4), 360-368.
-
Abad, G., Lopez, J., Rodriguez, M., Marroyo, L., & Iwanski, G. (2011). Doubly fed induction machine: modeling and control for wind energy generation. John Wiley & Sons.
-
Wu, B., Lang, Y., Zargari, N., & Kouro, S. (2011). Power conversion and control of wind energy systems. John Wiley & Sons.
-
Sul, S. K. (2011). Control of electric machine drive systems. John Wiley & Sons.
-
Bose, B. K. (1986). Power electronics and AC drives. Englewood Cliffs.
-
Yamamoto, M., & Motoyoshi, O. (1991). Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Transactions on Power Electronics, 6(4), 624-629.
-
Forchetti, D., Garcia, G., & Valla, M. I. (2002, November). Vector control strategy for a doubly-fed stand-alone induction generator. In IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02 (Vol. 2, pp. 991-995). IEEE.
-
Ling, P., Yongdong, L., Jianyun, C., & Guofeng, Y. (2007, October). Vector control of a doubly fed induction generator for stand-alone ship shaft generator systems. In 2007 International Conference on Electrical Machines and Systems (ICEMS) (pp. 1033-1036). IEEE.
-
Xu, L., & Cartwright, P. (2006). Direct active and reactive power control of DFIG for wind energy generation. IEEE Transactions on energy conversion, 21(3), 750-758.
-
Choudhury, A., Pillay, P., & Williamson, S. S. (2015). Modified DC-bus voltage-balancing algorithm based three-level neutral-point-clamped IPMSM drive for electric vehicle applications. IEEE Transactions on Industrial Electronics, 63(2), 761-772.
-
Lin, Y. S., Hu, K. W., Yeh, T. H., & Liaw, C. M. (2015). An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter. IEEE Transactions on Vehicular Technology, 65(6), 4493-4504.
-
Khayamy, M., & Chaoui, H. (2018). Current sensorless MTPA operation of interior PMSM drives for vehicular applications. IEEE Transactions on Vehicular Technology, 67(8), 6872-6881.
-
Windisch, T., & Hofmann, W. (2018). A novel approach to MTPA tracking control of AC drives in vehicle propulsion systems. IEEE Transactions on Vehicular Technology, 67(10), 9294-9302.
-
Blaschke, F. (1971). Das Prizip der Feldorientierung, die Grundlange für die Transvektor‐Regerung von Drehfeldmaschinen. Siemens Zeitschrift, 45, 757.
-
Ashfaq, H., Saood, M., & Asghar, M. J. (2017). A new formulation for minimum input volt-ampere (VA)-slip relationship of three-phase induction motors. Journal of King Saud University-Engineering Sciences, 29(3), 253-256.
-
Antonello, R., Carraro, M., & Zigliotto, M. (2013). Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control. IEEE Transactions on Industrial Electronics, 61(9), 5086-5093.
-
Sutikno, T., Idris, N. R. N., & Jidin, A. (2014). A review of direct torque control of induction motors for sustainable reliability and energy efficient drives. Renewable and sustainable energy reviews, 32, 548-558.
-
Mengoni, M., Zarri, L., Tani, A., Parsa, L., Serra, G., & Casadei, D. (2014). High-torque-density control of multiphase induction motor drives operating over a wide speed range. IEEE Transactions on Industrial Electronics, 62(2), 814-825.
-
Adiuku, C. O., Beig, A. R., & Kanukollu, S. (2015, February). Sensorless closed loop V/f control of medium-voltage high-power induction motor with synchronized space vector PWM. In 2015 IEEE 8th GCC Conference & Exhibition (pp. 1-6). IEEE.
-
Vedreño-Santos, F., Riera-Guasp, M., Henao, H., Pineda-Sánchez, M., & Puche-Panadero, R. (2013). Diagnosis of rotor and stator asymmetries in wound-rotor induction machines under nonstationary operation through the instantaneous frequency. IEEE Transactions on Industrial Electronics, 61(9), 4947-4959.
-
Zaky, M. S., & Metwaly, M. K. (2016). Sensorless torque/speed control of induction motor drives at zero and low frequencies with stator and rotor resistance estimations. IEEE journal of emerging and selected topics in power electronics, 4(4), 1416-1429.
-
Smith, A., Gadoue, S., Armstrong, M., & Finch, J. (2013). Improved method for the scalar control of induction motor drives. IET electric power applications, 7(6), 487-498.
-
Pati, S., Mohanty, S., & Patnaik, M. (2014, March). Improvement of transient and steady state performance of a scalar controlled induction motor using sliding mode controller. In 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014] (pp. 220-225). IEEE.
-
Müller, S., Deicke, M., & De Doncker, R. W. (2002). Doubly fed induction generator systems for wind turbines: A viable alternative to adjust speed over a wide range at minimal cost. IEEE Industry applications magazine, 8(3), 26-33.
-
Akagi, H., & Sato, H. (2002). Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Transactions on Power Electronics, 17(1), 109-116.
Rüzgâr Türbinlerinde Kullanılan Jeneratörler İçin Kontrol Yöntemleri
Yıl 2025,
Cilt: 10 Sayı: 4, 255 - 271, 31.12.2025
Omran Alabedalkhamıs
,
Hüseyin Alptekin
Öz
Bu makale, elektrik makinelerinde kontrol konusuna genel bir bakış sunmaktadır. Bu çalışmanın birincil amacı, çoğu elektrik makinesi türü için en uygun kontrol yöntemini belirlemektir. Öncelikle, genel olarak elektrik makinelerinin kontrol prensibi açıklanmış, daha sonra skaler kontrol ve vektör kontrol incelenmiştir. Doğrudan ve dolaylı vektör kontrolü incelenmiş ve karşılaştırılmış, ayrıca her birinin avantaj ve dezavantajları belirlenmiştir. Bu çalışma, rüzgar enerjisinde en yaygın kullanılan jeneratörlerden biri olan Çift Beslemeli Asenkron Jeneratörün (DFIG) vektör kontrolünü incelemeye odaklanmıştır. Rotor tarafından akım, güç ve hız kontrolü, Çift Beslemeli Asenkron Jeneratörün (DFIG) matematiksel modelini temsil eden bir dizi denklem oluşturularak incelenmiştir. Şebeke tarafında ise Çift Beslemeli İndüksiyon Jeneratörü (DFIG) ile şebeke arasındaki reaktif gücü düzenleme yöntemi açıklanmıştır. Sonuçlar, skaler ve vektör kontrolü arasında basitleştirilmiş bir karşılaştırma ile birlikte tartışılmaktadır. Makale ayrıca jeneratör tipleri arasında basitleştirilmiş bir karşılaştırma içermekte ve her birinin avantaj ve dezavantajlarını tanımlamaktadır.
Etik Beyan
Çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumu beyan ederim.
Destekleyen Kurum
EFG ELEKTRİK ENERJİ A.Ş. AR-GE DİYARBAKIR TÜRKİYE
Teşekkür
EFG ELEKTRİK ENERJİ şirketine araştırmada başarılı olmamızı sağladığı için teşekkür etmek istiyorum.
Kaynakça
-
Tanaka, N. (2010). World energy outlook 2010. International Energy Agency. Paris: IEA.
-
Takahashi, I., & Noguchi, T. (2008). A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transactions on Industry applications, (5), 820-827.
-
Baader, U., Depenbrock, M., & Gierse, G. (2002). Direct self-control (DSC) of inverter-fed induction machine: a basis for speed control without speed measurement. IEEE transactions on industry applications, 28(3), 581-588.
-
Noguchi, T., Tomiki, H., Kondo, S., & Takahashi, I. (2002). Direct power control of PWM converter without power-source voltage sensors. IEEE transactions on industry applications, 34(3), 473-479.
-
Malinowski, M., Kazmierkowski, M. P., Hansen, S., Blaabjerg, F., & Marques, G. D. (2002). Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Transactions on industry applications, 37(4), 1019-1027.
-
Escobar, G., Stankovic, A. M., Carrasco, J. M., Galván, E., & Ortega, R. (2003). Analysis and design of direct power control (DPC) for a three phase synchronous rectifier via output regulation subspaces. IEEE Transactions on Power Electronics, 18(3), 823-830.
-
Gokhale, K. P., Karraker, D. W., & Heikkilä, S. J. (2002). U.S. Patent No. 6,448,735. Washington, DC: U.S. Patent and Trademark Office.
-
Mohammadpour, A., Sadeghi, S., & Parsa, L. (2013). A generalized fault-tolerant control strategy for five-phase PM motor drives considering star, pentagon, and pentacle connections of stator windings. IEEE Transactions on Industrial Electronics, 61(1), 63-75.
-
Fei, M., & Zanasi, R. (2012, June). Multi-phase synchronous motors: Minimum dissipation fault-tolerant controls. In International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion (pp. 219-224). IEEE.
-
Locment, F., Semail, E., & Kestelyn, X. (2008). Vectorial approach-based control of a seven-phase axial flux machine designed for fault operation. IEEE Transactions on Industrial Electronics, 55(10), 3682-3691.
-
Kianinezhad, R., Nahid-Mobarakeh, B., Baghli, L., Betin, F., & Capolino, G. A. (2008). Modeling and control of six-phase symmetrical induction machine under fault condition due to open phases. IEEE Transactions on Industrial Electronics, 55(5), 1966-1977.
-
Tani, A., Mengoni, M., Zarri, L., Serra, G., & Casadei, D. (2011). Control of multiphase induction motors with an odd number of phases under open-circuit phase faults. IEEE Transactions on Power Electronics, 27(2), 565-577.
-
Beig, A. R., Narayanan, G., & Ranganathan, V. T. (2007). Modified SVPWM algorithm for three level VSI with synchronized and symmetrical waveforms. IEEE transactions on industrial electronics, 54(1), 486-494.
-
Beig, A. R., Narayanan, G., & Ranganathan, V. T. (2002, November). Space vector based synchronized PWM algorithm for three level voltage source inverters: principles and application to V/f drives. In IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02 (Vol. 2, pp. 1249-1254). IEEE.
-
Munoz-Garcia, A., Lipo, T. A., & Novotny, D. W. (2002). A new induction motor V/f control method capable of high-performance regulation at low speeds. IEEE transactions on Industry Applications, 34(4), 813-821.
-
Wang, C. C., & Fang, C. H. (2003). Sensorless scalar-controlled induction motor drives with modified flux observer. IEEE transactions on energy conversion, 18(2), 181-186.
-
Hopfensperger, B., Atkinson, D. J., & Lakin, R. A. (1999). Stator flux oriented control of a cascaded doubly-fed induction machine. IEE Proceedings-Electric Power Applications, 146(6), 597-605.
-
Bensadeq, A. (2012). Design and Control of the Brushless Doubly Fed Twin Induction Generator (BDFTIG) using dSPACE (Doctoral dissertation, University of Leicester).
-
Diaz, A., Saltares, R., Rodriguez, C., Nunez, R. F., Ortiz-Rivera, E. I., & Gonzalez-Llorente, J. (2009, May). Induction motor equivalent circuit for dynamic simulation. In 2009 IEEE International Electric Machines and Drives Conference (pp. 858-863). IEEE.
-
Wang, S., & Ding, Y. (1993). Stability analysis of field oriented doubly-fed induction machine drive based on computer simulation. Electric Machines and power systems, 21(1), 11-24.
-
Xu, L., & Cheng, W. (1995). Torque and reactive power control of a doubly fed induction machine by position sensorless scheme. IEEE transactions on Industry Applications, 31(3), 636-642.
-
Hopfensperger, B., Atkinson, D. J., & Lakin, R. A. (2000). Stator-flux-oriented control of a doubly-fed induction machine: with and without position encoder. IEE Proceedings-Electric power applications, 147(4), 241-250.
-
Leonhard, W. (2001). Control of electrical drives. Springer Science & Business Media.
-
Pena, R., Clare, J. C., & Asher, G. M. (1996). Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proceedings-Electric power applications, 143(3), 231-241.
-
Tang, Y., & Xu, L. (1995). A flexible active and reactive power control strategy for a variable speed constant frequency generating system. IEEE Transactions on power electronics, 10(4), 472-478.
-
Datta, R., & Ranganathan, V. T. (1999, October). Decoupled control of active and reactive power for a grid-connected doubly-fed wound rotor induction machine without position sensors. In Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370) (Vol. 4, pp. 2623-2630). IEEE.
-
Morel, L., Godfroid, H., Mirzaian, A., & Kauffmann, J. M. (1998). Double-fed induction machine: converter optimisation and field oriented control without position sensor. IEE Proceedings-Electric Power Applications, 145(4), 360-368.
-
Abad, G., Lopez, J., Rodriguez, M., Marroyo, L., & Iwanski, G. (2011). Doubly fed induction machine: modeling and control for wind energy generation. John Wiley & Sons.
-
Wu, B., Lang, Y., Zargari, N., & Kouro, S. (2011). Power conversion and control of wind energy systems. John Wiley & Sons.
-
Sul, S. K. (2011). Control of electric machine drive systems. John Wiley & Sons.
-
Bose, B. K. (1986). Power electronics and AC drives. Englewood Cliffs.
-
Yamamoto, M., & Motoyoshi, O. (1991). Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Transactions on Power Electronics, 6(4), 624-629.
-
Forchetti, D., Garcia, G., & Valla, M. I. (2002, November). Vector control strategy for a doubly-fed stand-alone induction generator. In IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02 (Vol. 2, pp. 991-995). IEEE.
-
Ling, P., Yongdong, L., Jianyun, C., & Guofeng, Y. (2007, October). Vector control of a doubly fed induction generator for stand-alone ship shaft generator systems. In 2007 International Conference on Electrical Machines and Systems (ICEMS) (pp. 1033-1036). IEEE.
-
Xu, L., & Cartwright, P. (2006). Direct active and reactive power control of DFIG for wind energy generation. IEEE Transactions on energy conversion, 21(3), 750-758.
-
Choudhury, A., Pillay, P., & Williamson, S. S. (2015). Modified DC-bus voltage-balancing algorithm based three-level neutral-point-clamped IPMSM drive for electric vehicle applications. IEEE Transactions on Industrial Electronics, 63(2), 761-772.
-
Lin, Y. S., Hu, K. W., Yeh, T. H., & Liaw, C. M. (2015). An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter. IEEE Transactions on Vehicular Technology, 65(6), 4493-4504.
-
Khayamy, M., & Chaoui, H. (2018). Current sensorless MTPA operation of interior PMSM drives for vehicular applications. IEEE Transactions on Vehicular Technology, 67(8), 6872-6881.
-
Windisch, T., & Hofmann, W. (2018). A novel approach to MTPA tracking control of AC drives in vehicle propulsion systems. IEEE Transactions on Vehicular Technology, 67(10), 9294-9302.
-
Blaschke, F. (1971). Das Prizip der Feldorientierung, die Grundlange für die Transvektor‐Regerung von Drehfeldmaschinen. Siemens Zeitschrift, 45, 757.
-
Ashfaq, H., Saood, M., & Asghar, M. J. (2017). A new formulation for minimum input volt-ampere (VA)-slip relationship of three-phase induction motors. Journal of King Saud University-Engineering Sciences, 29(3), 253-256.
-
Antonello, R., Carraro, M., & Zigliotto, M. (2013). Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control. IEEE Transactions on Industrial Electronics, 61(9), 5086-5093.
-
Sutikno, T., Idris, N. R. N., & Jidin, A. (2014). A review of direct torque control of induction motors for sustainable reliability and energy efficient drives. Renewable and sustainable energy reviews, 32, 548-558.
-
Mengoni, M., Zarri, L., Tani, A., Parsa, L., Serra, G., & Casadei, D. (2014). High-torque-density control of multiphase induction motor drives operating over a wide speed range. IEEE Transactions on Industrial Electronics, 62(2), 814-825.
-
Adiuku, C. O., Beig, A. R., & Kanukollu, S. (2015, February). Sensorless closed loop V/f control of medium-voltage high-power induction motor with synchronized space vector PWM. In 2015 IEEE 8th GCC Conference & Exhibition (pp. 1-6). IEEE.
-
Vedreño-Santos, F., Riera-Guasp, M., Henao, H., Pineda-Sánchez, M., & Puche-Panadero, R. (2013). Diagnosis of rotor and stator asymmetries in wound-rotor induction machines under nonstationary operation through the instantaneous frequency. IEEE Transactions on Industrial Electronics, 61(9), 4947-4959.
-
Zaky, M. S., & Metwaly, M. K. (2016). Sensorless torque/speed control of induction motor drives at zero and low frequencies with stator and rotor resistance estimations. IEEE journal of emerging and selected topics in power electronics, 4(4), 1416-1429.
-
Smith, A., Gadoue, S., Armstrong, M., & Finch, J. (2013). Improved method for the scalar control of induction motor drives. IET electric power applications, 7(6), 487-498.
-
Pati, S., Mohanty, S., & Patnaik, M. (2014, March). Improvement of transient and steady state performance of a scalar controlled induction motor using sliding mode controller. In 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014] (pp. 220-225). IEEE.
-
Müller, S., Deicke, M., & De Doncker, R. W. (2002). Doubly fed induction generator systems for wind turbines: A viable alternative to adjust speed over a wide range at minimal cost. IEEE Industry applications magazine, 8(3), 26-33.
-
Akagi, H., & Sato, H. (2002). Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Transactions on Power Electronics, 17(1), 109-116.