Basılı belge ya da görüntülerdeki karakterlerin okunarak, düzenlenebilir metinler haline getirilmesi Optik Karakter Tanıma (OKT) yöntemleriyle gerçekleştirilmektedir. Karakter tanıma yöntemlerinin temelinde görüntü işleme basamakları vardır. İlk olarak basılı belgelerin veya görüntülerin bir kamera ya da tarayıcı yardımıyla sayısal ortama aktarılması gerekmektedir. Ancak belge görüntülerinin elde edilirken ışık, gölge ve arka plan gibi çevresel parametrelere dikkat edilmediğinde karakter tanıma zor olmaktadır. Ayrıca yine belge ya da görüntülerin, eğik olarak sayısal ortama aktarılmasıyla, karakterlerde meydana gelen eğiklikler, el yazısıyla karakterlerde oluşan eğiklikler ya da italik (eğik) biçimli karakterlerdeki eğiklikler OKT tanıma başarısını olumsuz etkilemektedir. Günümüzde birçok açık ya da kapalı kaynak kodlu OKT yazılım uygulaması vardır. Tesseract en yaygın kullanılan ve karakter tanıma başarısı yüksek olan açık kaynak kodlu yazılımdır. Bu çalışmada, açık kaynak kodlu Tesseract karakter tanıma yazılımının eğik karakter tanıma başarısını arttırmaya yönelik, bir görüntü işleme yöntemi geliştirilmiştir. Geliştirilen yöntem, Dithering (Titreşim) görüntü işleme algoritmasının 4x1 boyutlu yatay biçime dönüştürülmesiyle elde edilmiştir. Yapılan testlerde, Arial ve Times New Roman yazı stillerinin eğik biçimli karakterleri kullanılmıştır. Birbirine benzeyen 429 karakter üzerinde yapılan test sonucunda, geliştirilen yöntemin %33’e varan oranlarda, Tesseract yazılımının başarısını arttırdığı görülmüştür.
Karakter tanıma Tesseract Eğik karakter Görüntü işleme Titreşim algoritması
Birincil Dil | Türkçe |
---|---|
Konular | Bilgisayar Yazılımı |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Yayımlanma Tarihi | 30 Nisan 2021 |
Gönderilme Tarihi | 28 Kasım 2020 |
Kabul Tarihi | 25 Şubat 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 6 Sayı: 1 |