Loading [a11y]/accessibility-menu.js
 
BibTex RIS Kaynak Göster

-

Yıl 2013, Cilt: 28 Sayı: 28-2, 44 - 57, 01.06.2013

Öz

This study aims to develop valid and reliable scale in order to measure preservice teachers’ beliefs towards using origami in mathematics education. Origami in Mathematics Education Belief Scale which consists of 27 items with 6 point Likert type was administered to 143 preservice elementary mathematics teachers and obtained data was analyzed with exploratory factor analysis. According to analysis results, one item was deleted and some items were revised. After these revisions, the scale consists of 26 items under two dimensions. First dimension is benefits of origami in mathematics education consisting of 19 items and second dimension is limitations of using origami in mathematics education consisting of 7 items. This last version of the scale was administered to 299 preservice elementary mathematics teachers and obtained data was analyzed via confirmatory factor analysis. According to confirmatory factor analysis, RMSEA was calculated as 0.091, CFI and GFI values were calculated as 0.90 .

Kaynakça

  • Akan-Sağsöz, D. (2008). İlköğretim 6. sınıftaki kesirler konusunun origami yardımıyla öğretimi. Unpublished master’s thesis, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum.
  • Beech, R. (2009). The practical illustrated encyclopedia of origami: The complete guide to the art of paper folding. London: Lorenz Books.
  • Boakes, N. (2008). Origami-mathematics lessons: Paper folding as a teaching tool. Mathidues, 1(1), 1-9.
  • Boakes, N. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. Research in Middle Level Education Online, 32(7), 1-12.
  • Büyüköztürk, S. (2002). Sosyal Bilimler İçin Veri Analizi El Kitabı. Ankara: Pegem A Yayıncılık.
  • Chen, K. (2006). Math in motion: Origami math for students who are deaf and hard of hearing. Journal of Deaf Studies and Deaf Education, 11(2), 262-266.
  • Cipoletti, B., & Wilson, N. (2004). Turning origami into the language of mathematics. Mathematics Teaching in the Middle School, 10(1), 26-31.
  • Coad, L. (2006). Paper folding in the middle school classroom and beyond. Australian Mathematics Teacher, 62(1), 6
  • Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment Research & Evaluation, 10 (7). [Çevrim-içi: http://pareonline.net/getvn.asp?v=10&n=7 ], Erişim tarihi: 03.03.2011.
  • Çakmak, S. (2009). An investigation of the effect of origami-based instruction on elementary students’ spatial ability in mathematics. Unpublished master’s thesis, Orta Doğu Teknik Üniversitesi, Sosyal Bilimler Enstitüsü, Ankara. Çokluk, O., Şekercioğlu, G. ve Büyüköztürk, S. (2010). Sosyal Bilimler İçin Çok Değiskenli İstatistik: SPSS ve Lisrel Uygulamaları. Ankara: Pegem A Yayıncılık.
  • DeYoung, M. J. (2009). Math in the box. Mathematics Teaching in the Middle School, 15(3), 134-141.
  • Duatepe-Paksu, A. (2008). Comparing teachers’ beliefs in terms of their branches and gender. Hacettepe University Journal of Education, 35, 87-97.
  • Georgeson, J. (2011). Fold in origami and unfold math. Mathematics Teaching in Middle School, 16(6), 354-361.
  • Golan, M., & Jackson, P. (2010). Origametria: A program to teach geometry and to develop learning skills using the art of origami. [Çevrim-içi: http://www.emotive.co.il/origami/db/pdf/996_golan_article.pdf ], Erişim tarihi: 002011.
  • Higginson, W., & Colgan, L. (2001). Algebraic thinking through origami. Mathematics Teaching in the Middle School, 6(6), 343-349.
  • Hu, L. & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.
  • Kelloway, K. E. (1998). Using Lisrel for Structural Equation Modeling: A Researcher's Guide. London: Sage.
  • Kliene, R. B. (2005). Principles and Practice of Structural Equation Modeling. (2nd ed.). NY: Guilford Publications, Inc.
  • Krosnick, J. A., & Fabrigar, L. R. (1997). Designing rating scales for effective measurement in surveys. In R. M. Groves, P. P. Biemer, L. E. Lyberg, J. T. Massey, W. L. Nicholls, & J. Waksberg (Eds.), Telephone survey methodology (pp. 509-528). New York: Wiley.
  • Mastin, M. (2007). Storytelling + origami = storigami mathematics. Teaching Children Mathematics, 14(4), 206-212. McLeod, D. B. (1994). Research on affect and mathematics learning in JRME: 1970 to the present. Journal for Research in Mathematics Education, 25(6), 637-647.
  • Matsunaga, M. (2010). How to factor analyze your data right: Do's, don’t's, and how-to's. International Journal of Psychological Research, 3 (1), 97-110.
  • Nespor, J. (1987). The role of beliefs in the practice of teaching. Journal of Curriculum Studies, 19(4), 317-328.
  • Pallant, J. (2007). SPSS survival manual: A step by step guide to data analysis using SPSS for windows (3rd ed.). Berkshire, England: Open University Press.
  • Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 257-315). Charlotte, NC: Information Age Publishing.
  • Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62 (3), 307-332.
  • Shelby, L. B. (2011). Beyond cronbach's alpha: Considering confirmatory factor analysis and segmentation. Human Dimensionf of Wildlife, 16, 142-148.
  • Stevens, J. (2002). Applied multivariate statistics for the social sciences. Mahwah, NJ: Erlbaum.
  • Sze, S. (2005). An analysis of constructivism and the ancient art of origami. [Çevrim-içi: http://www.eric.ed.gov/PDFS/ED490350.pdf ], Erişim tarihi: 01.08.2011.
  • Tuğrul, B. ve Kavici, M. (2002). Kağıt katlama sanatı ve öğrenme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 1(11), 1-17.
  • Wares, A. (2011). Using origami boxes to explore concepts of geometry and calculus. International Journal of Mathematical Education in Science and Technology, 42(2), 264-272.
  • Yoshioka, R. (1963). Fold paper to learn geometry. The Science News-Letter, 83(9), 138-139.
  • Yuzawa, M., & Bart, W. M. (2002). Young children’s learning of size comparison strategies: Effect of origami exercises. The Journal of Genetic Psychology, 163(4), 459-478.

Origaminin Matematik Eğitiminde Kullanılmasına Yönelik İnanç Ölçeği Geliştirilmesi

Yıl 2013, Cilt: 28 Sayı: 28-2, 44 - 57, 01.06.2013

Öz

Bu çalışma ile öğretmen adaylarının origaminin matematik eğitiminde kullanılmasına ilişkin inançlarını belirlemeye yönelik geçerli ve güvenilir bir ölçek geliştirilmesi amaçlanmıştır. Bu doğrultuda hazırlanan 27 maddeli 6’lı Likert tipindeki Matematik Eğitiminde Origami İnanç Ölçeği’nin, origami ile ilgili ders tecrübesi olan 143 ilköğretim matematik öğretmen adayına uygulanması sonucu elde edilen veriler açımlayıcı faktör analizi ile incelenmiştir. Analiz sonuçlarına göre bir madde silinmiş ve bazı maddeler üzerinde değişikliğe gidilmiştir. Bu değişikler sonucunda 26 maddeden oluşan Matematik Eğitiminde Origami İnanç Ölçeği için, 19 maddeden oluşan matematik eğitiminde origaminin faydaları ve 7 maddeden oluşan matematik eğitiminde origami kullanılmasının sınırlılıkları boyutları şeklinde iki faktörlü yapı ortaya çıkmıştır. Ölçek daha sonra 299 ilköğretim matematik öğretmen adayına uygulanarak, elde edilen verilerin doğrulayıcı faktör analizi yapılmıştır. Açımlayıcı faktör analizi ile önerilen faktör modeli, doğrulayıcı faktör analizi ile test edilmiştir. RMSEA değeri 0.091, CFI ile GFI değerleri ise 0.90 olarak hesaplanmıştır.

Kaynakça

  • Akan-Sağsöz, D. (2008). İlköğretim 6. sınıftaki kesirler konusunun origami yardımıyla öğretimi. Unpublished master’s thesis, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum.
  • Beech, R. (2009). The practical illustrated encyclopedia of origami: The complete guide to the art of paper folding. London: Lorenz Books.
  • Boakes, N. (2008). Origami-mathematics lessons: Paper folding as a teaching tool. Mathidues, 1(1), 1-9.
  • Boakes, N. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. Research in Middle Level Education Online, 32(7), 1-12.
  • Büyüköztürk, S. (2002). Sosyal Bilimler İçin Veri Analizi El Kitabı. Ankara: Pegem A Yayıncılık.
  • Chen, K. (2006). Math in motion: Origami math for students who are deaf and hard of hearing. Journal of Deaf Studies and Deaf Education, 11(2), 262-266.
  • Cipoletti, B., & Wilson, N. (2004). Turning origami into the language of mathematics. Mathematics Teaching in the Middle School, 10(1), 26-31.
  • Coad, L. (2006). Paper folding in the middle school classroom and beyond. Australian Mathematics Teacher, 62(1), 6
  • Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment Research & Evaluation, 10 (7). [Çevrim-içi: http://pareonline.net/getvn.asp?v=10&n=7 ], Erişim tarihi: 03.03.2011.
  • Çakmak, S. (2009). An investigation of the effect of origami-based instruction on elementary students’ spatial ability in mathematics. Unpublished master’s thesis, Orta Doğu Teknik Üniversitesi, Sosyal Bilimler Enstitüsü, Ankara. Çokluk, O., Şekercioğlu, G. ve Büyüköztürk, S. (2010). Sosyal Bilimler İçin Çok Değiskenli İstatistik: SPSS ve Lisrel Uygulamaları. Ankara: Pegem A Yayıncılık.
  • DeYoung, M. J. (2009). Math in the box. Mathematics Teaching in the Middle School, 15(3), 134-141.
  • Duatepe-Paksu, A. (2008). Comparing teachers’ beliefs in terms of their branches and gender. Hacettepe University Journal of Education, 35, 87-97.
  • Georgeson, J. (2011). Fold in origami and unfold math. Mathematics Teaching in Middle School, 16(6), 354-361.
  • Golan, M., & Jackson, P. (2010). Origametria: A program to teach geometry and to develop learning skills using the art of origami. [Çevrim-içi: http://www.emotive.co.il/origami/db/pdf/996_golan_article.pdf ], Erişim tarihi: 002011.
  • Higginson, W., & Colgan, L. (2001). Algebraic thinking through origami. Mathematics Teaching in the Middle School, 6(6), 343-349.
  • Hu, L. & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.
  • Kelloway, K. E. (1998). Using Lisrel for Structural Equation Modeling: A Researcher's Guide. London: Sage.
  • Kliene, R. B. (2005). Principles and Practice of Structural Equation Modeling. (2nd ed.). NY: Guilford Publications, Inc.
  • Krosnick, J. A., & Fabrigar, L. R. (1997). Designing rating scales for effective measurement in surveys. In R. M. Groves, P. P. Biemer, L. E. Lyberg, J. T. Massey, W. L. Nicholls, & J. Waksberg (Eds.), Telephone survey methodology (pp. 509-528). New York: Wiley.
  • Mastin, M. (2007). Storytelling + origami = storigami mathematics. Teaching Children Mathematics, 14(4), 206-212. McLeod, D. B. (1994). Research on affect and mathematics learning in JRME: 1970 to the present. Journal for Research in Mathematics Education, 25(6), 637-647.
  • Matsunaga, M. (2010). How to factor analyze your data right: Do's, don’t's, and how-to's. International Journal of Psychological Research, 3 (1), 97-110.
  • Nespor, J. (1987). The role of beliefs in the practice of teaching. Journal of Curriculum Studies, 19(4), 317-328.
  • Pallant, J. (2007). SPSS survival manual: A step by step guide to data analysis using SPSS for windows (3rd ed.). Berkshire, England: Open University Press.
  • Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 257-315). Charlotte, NC: Information Age Publishing.
  • Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62 (3), 307-332.
  • Shelby, L. B. (2011). Beyond cronbach's alpha: Considering confirmatory factor analysis and segmentation. Human Dimensionf of Wildlife, 16, 142-148.
  • Stevens, J. (2002). Applied multivariate statistics for the social sciences. Mahwah, NJ: Erlbaum.
  • Sze, S. (2005). An analysis of constructivism and the ancient art of origami. [Çevrim-içi: http://www.eric.ed.gov/PDFS/ED490350.pdf ], Erişim tarihi: 01.08.2011.
  • Tuğrul, B. ve Kavici, M. (2002). Kağıt katlama sanatı ve öğrenme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 1(11), 1-17.
  • Wares, A. (2011). Using origami boxes to explore concepts of geometry and calculus. International Journal of Mathematical Education in Science and Technology, 42(2), 264-272.
  • Yoshioka, R. (1963). Fold paper to learn geometry. The Science News-Letter, 83(9), 138-139.
  • Yuzawa, M., & Bart, W. M. (2002). Young children’s learning of size comparison strategies: Effect of origami exercises. The Journal of Genetic Psychology, 163(4), 459-478.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Okan Arslan Bu kişi benim

Mine İşiksal Bostan Bu kişi benim

Elvan Şahin Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 28 Sayı: 28-2

Kaynak Göster

APA Arslan, O., Bostan, M. İ., & Şahin, E. (2013). Origaminin Matematik Eğitiminde Kullanılmasına Yönelik İnanç Ölçeği Geliştirilmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(28-2), 44-57.